
IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014
ISSN : 2348 - 6090
www.IJCAT.org

125

Design of 512 bitKeccak Hash Function Encryp-

tion for High Throughput Core

1 Ms. Sheetal C. Deshmukh, 2 Ms.ApekshaV. Sakhare

Department of Computer Science and Engineering, G.H.Raisoni College of Engineering

Nagpur, Maharashtra, India.

Department of Computer Science and Engineering, G.H.Raisoni College of Engineering

Nagpur,Maharashtra,India

Abstract - Security has become a curial aspect in the design

and use of computer system and network. Hash functions are
used for many applications in cryptography mainly in digital

signatures and message authentication code and in network

security. Keccak hash function has been submitted to SHA-3

competition. In this paper has implement “SHA-3 512 bit”
hash function and high throughput cone designed to work in

high clock frequency dedicated to ASIC or expensive FPGA (
virtex-7). The maximum clock frequency supported by the
design 267.2 MHz.

Keywords- FPGA, cryptography, hash functions, Xilinx

IES 13.1.

1. Introduction

Cryptography is used to adders many security issues the

most pertinent of which are integrity, cryptography en-

compass, confidentiality and authentication proposes.

Security has become a crucial aspect in the design and

use of computer system and network. Cryptanalysis en-

tails the analysis and evaluation of cryptographic algo-

rithms including protocol and primitives. The important

of hash function. In cryptographic protocols the modern

cryptography is clearly proven by different application

and multi-purposes.

Nowadays, the security is more important in all area.

SHA-3(secure hash algorithm) is performed using vari-

ous hash function.[1] In this some hash function are de-

sign and implemented on the FPGA. There are five hash

algorithms and keccak is one of them. In this paper the

total internal architecture of secure hash algorithm-3

using keccak hash function for 512 bit encryption are

implemented. This total architecture is implemented on

the FPGA.

Cryptography does nothing on its own. It is a basic and

vital ingredient of any security architecture, but it is

nothing more than that. Cryptography needs to be used

in particular ways, it needs to be combined with other

technologies, it needs to be implemented properly and it

needs to be supported by the appropriate managerial

processes. If any one of these aspects is deficient then it

is quite likely that using cryptography does not bring the

security guarantees that are being sought.vCryptographic

secure hash function consists of many applications. First

is digital signature are the first application of crypto-

graphic secured hash function. Massage authentication

code (MAC) is the second application, in digital signa-

ture schemes the hash function serve a dual role. They

expand the domain of messages that can be signed by

sachem and they are an essential element of the schemes
security. The third a common method of client authenti-

cation is to require the client to present a password pre-

viously registered with the server.

Storing password of all the users on the server poses an

obvious security risk. Although the server need not to

know the passwords. It may store their hashes (together

with some salt to frustrate dictionary attacks) and use the

information to match it with the hashes of alleged pass-

words. Efficiency on the hardware implementation is

one of the important criteria for the hash function selec-
tion. The implementation is categorized in two parts.[2]

That is FPGA and standard cell ASIC implementation.

Implementation on FPGA it is desirable to compare im-

plementation on the same target device or on device of

the same FPGA family.But the minimal gate lengths are

required for ASIC implementation .Three different

hardware implementations are used for comparison in

many modules and different application.

• Autonomous implementation

• Implementation with external memory

• Implementation of core functionality

The field-programmable gate array (FPGA) is a semi-

conductor device that can be programmed after manu-

facturing. Instead of being restricted to any predeter-

mined hardware function, an FPGA allows you to pro-

gram product features and functions, adapt to new stan-

dards, and reconfigure hardware for specific applications

even after the product has been installed in the field—

hence the name "field-programmable". You can use an

FPGA to implement any logical function that an applica-
tion-specific integrated circuit (ASIC) could perform,

but the ability to update the functionality after shipping

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014
ISSN : 2348 - 6090
www.IJCAT.org

126

offers advantages for many applications.Unlike previous

generation FPGAs using I/Os with programmable logic

and interconnects, today's FPGAs consist of various

mixes of configurable embedded SRAM, high-speed

transceivers, high-speed I/Os, logic blocks, and routing.

Specifically, an FPGA contains programmable logic

components called logic elements (LEs) and a hierarchy

of reconfigurable interconnects that allow the LEs to be

physically connected. You can configure LEs to perform

complex combinational functions, or merely simple

logic gates like AND and XOR. In most FPGAs, the

logic blocks also include memory elements, which may

be simple flipflops or more complete blocks of memory.

1.1 Stream Ciphers

Stream ciphers are cryptographic algorithms that trans-

form a stream of plaintext messages of varying bit-

length into cipher text of the same length, usually by

generating a key stream that is then XORed with the

plaintext. Using a shared secret key, stream ciphers can

be used to provide confidentiality, i.e., restrict access to
secret data to the parties in possession of the key by en-

crypting the plaintext secret data. In general, stream ci-

phers have very strong security properties, use few re-

sources and high throughput thus making them ideal for

mobile applications; well-known examples of stream

ciphers include the RC4 cipher used in 802.11 Wireless

Encryption Protocol, E0 cipher used in Bluetooth proto-

col, and the SNOW 3G cipher used by the 3GPP group

in the new mobile cellular standard.

1.2 Hash Functions

Like hash functions, stream ciphers are important cryp-

tographic primitives. However, hash functions transform

arbitrary-length input messages into fixed-length mes-

sage digests. They are used in many applications in

commitment schemes, digital signatures and message

authentication codes. To this end they are required to

satisfy different security properties. These security prop-

erties include.

i) Preimage resistance, i.e., given f (x) it is
infeasible to find x,

ii) Second preimage resistance, i.e., given x it

is infeasible to find x1 _ x : f (x) = f (x1),

and

iii) collision resistance, i.e., it is infeasible to

find x, x1 : x1 _ x and f (x) = f

(x1).Informally, a hash function is collision

resistant if it is practically infeasible to find

two distinct messages m1 and m2

iv) That produces the same message digest.

2. Objective

In previous design BLAKE hash function, JH hash func-

tion, Skein Hash function and Ghrostl hash function is

implemented. All these hash function required more

rounding for encryption [4].Our objective is to provide

more encryption using less number of rounding i.e more

permutation has to done, in 5 candidates of SHA-3 final-

ist. Keccak hash function provides more encryption in

less rounding i.e for 512 bit encryption 10 rounds will be

required. To design and implement SHA-3 algorithm

using keccak hash function. Cryptography has to be

done for 512 bits. Design has to be done using HDL

coding which has to support high through put core.

Main objective is to design SHA-3 algorithm done by

candidate keccak for 512 bit cryptography. Verilog cod-

ing for proposed design is done in Xilinx ISE tool. Op-

timization Target is one of the most important decisions

to make in order to develop a fair comparison. The pos-

sible choices include Maximum Throughput, Minimum

Area, Maximum Throughput to Area Ratio, Minimum

Latency, etc. All of the aforementioned targets can be
used to make a comparison. Out of them, we have se-

lected Maximum throughput to Area Ratio as our criteria

of choice.

Fig 1.Whole core diagram of the system

The winning algorithm, Keccak (pronounced “catch-

ack”), was created by Guido Bertoni, Joan Daemen and

Gilles Van Assche of STMicroelectronics and

MichaëlPeeters of NXP Semiconductors. The team’s

entry beat out 63 other submissions that NIST received

after its open call for candidate algorithms in 2007,

when it was thought that SHA-2, the standard secure

hash algorithm, might be threatened. Keccak will now
become NIST’s SHA-3 hash algorithm.

3. Methodology

3.1 Architecture of Core

Hash algorithms are used widely for cryptographic ap-

plications that ensure the authenticity of digital docu-

ments, such as digital signatures and message authenti-

cation codes. These algorithms take an electronic file

and generate a short "digest," a sort of digital fingerprint

of the content In this selection has advantage over other

possible choices. First, it is practical, as hardware cores

are typically applied in situations. Where the size of the

processed data is significant and the speed of processing

is essential. Secondly, throughout the entire design proc-

ess this optimization criterion is a very reliable guide.[7]

At every junction where the decisions must be made, it

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014
ISSN : 2348 - 6090
www.IJCAT.org

127

starting from the choice of high-level hardware architec-

ture and down to the choice of the particular FPGA tool

options, this criterion facilitates the decision process,

leaving very few possible paths for further investigation.

Each submitted algorithm as compared to other submis-

sion (of the same hash length), including first and sec-

ond preimage resistance to generic attacks.

Also, if other security factors raised by the public com-

ments during the evaluation process, including attacks

which demonstrate that the actual security of the algo-

rithm is less than the strength claimed by the submitter.

This key note talk deal with the evaluation of computa-

tion efficiency. Computational efficiency essentially

refers to the throughput of an implementation of the

software. The memory required for hardware and soft-

ware implementations will be considered during the

evaluation process. Memory requirements will include
factor such as gate count for hardware implementation

and RAM requirement and code size for software im-

plantation. Algorithms with greater flexibility that meet

the need of more users are preferable. For example

“flexibility” includes the algorithm in order to achieve

and efficiency algorithm implementation for wide vari-

ety of platform. Including constrained environment such

as smart cards. The algorithms will be judged according

to relative simplicity of design.

Fig 2 Architecture of the padding and permutation module

The width of the user input is far less than 576 bit. So

the padding module uses a buffer to assemble the user

input. If the buffer grows full, the padding module no-

tices the permutation module its output is valid. Then the

permutation module begins calculation, the buffer

cleared, the padding module waiting for input simulta-

neously. In the high throughput core, two rounds are

done per clock cycle. The round constant module is im-

plemented by combinational logic, saving resource than

block RAM, because most bits of the round constant is

zero.

• FPGAs are selected as primary implementation

platform.

• Uniform input/output interface and protocol is

used in implementations of all of the SHA-3

candidates.

• Optimization target is throughput to area ratio.

• The same basic building blocks are used in

implementations of all candidates, by reusing

the same source codes for low level operations.

This approach rule out the possible inconsis-

tencies in optimizations of basic logic opera-

tions, possible if these operations were imple-

mented separately for each candidate.

• Hardware description language is verilog.

Different languages may have different level of

optimization capability. Using the same lan-

guage ensures that a design will not get a better

result simply because of the different treatment

of divergent languages by the current genera-

tion of CAD tool.

• CAD tools selected are tools developed by the

FPGA vendors :{ Xilinx: Xilinx ISE Design

Suite v. 13.1}

4. Simulation

These are the final result of keccak hash function.

RTL view of keccak hash function and waveform

are given below.

Fig 3 RTL View of Keccak Hash Function

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014
ISSN : 2348 - 6090
www.IJCAT.org

128

Fig 4 Waveform of Keccak Hash Function

The give table shows that how many registers LUT’S

and memory are required for design of architecture. For

the 512 bit encryption process 2236 registers and 9365

LUT’S are used.

Fig 5 Synthesis Result

5. Conclusion

Keccak hash function hardware implementations are

described in this paper. For implementation of this func-

tion use virtex-7 FPGA device in this paper provide

more encryption using less no of rounding i.e more per-

mutation has to done, in 5 candidates of SHA-3 finalist.
Keccak hash function provides more encryption in less

rounding i.e for 512 bit encryption 10 rounds will be

required to design and implement SHA-3 algorithm us-

ing keccak hash function.

References

[1] National Institute of Standard and Technology (NIST),

“Cryptographic hash algorithm competition”, 2007,

available on
lineathttp://www.nist.gov/itl/csd/ct/hash_competition.cf
m

[2] FatmaKahri, BelgacemBouallegue, Mohsen Machhout
and RachedTourki Electronics and Micro-Electronics

Laboratory “An FPGA implementation of the SHA-3:

The BLAKE Hash Function”(2012) (E. µ. E. L) Fac-
ulty of Sciences of Monastir, Tunisia Kahri-

fatma@gmail.com
[3] A. H. Namin& M. A. Hasan (2010 a), Implementation

of the Compression Function for Selected SHA-3 Can-

didates on FPGA. Retrieved Feb. 25th, 2010, from

University ofWaterloo, Department of Electrical and
Computer Engineering.

[4] Schorr (2010),Performance Analysis of a Scalable

Hardware FPGA Skein Implementation. Retrieved Feb-
ruary 2010, from Kate Gleason College of Engineering

Department of Computer Engineering Rochester ,New
York.

[5] J. Elbirt (2009), Understanding and Applying Crypto-

graph and Data Security. Book ISBN 978-1-4200-
6160-4 (alk.paper).

[6] Regenscheid, R. Perlner, S. Chang, J. Kelsey, M.
Nandi, & S. Paul (2009), Status Report on the First
Round of the SHA-3 Cryptographic Hash Algorithm

Competition. Retrieved September 2009, from Na-
tional Institute of Standards and Technology, U.S. De-

partment of Commerce.
[7] C. Rechberger (2010), Second-Preimage Analysis of

Reduced SHA-1, from KatholiekeUniversiteit Leuven,
Department of Electrical Engineering.

[8] ImadFakhriAlshaikhli, Mohammad A. Ahmad, Hanady

Mohammad Ahmad (2012). "Protection of the Texts
Using Base64 and MD5."JACSTRVol 2, No 1

(2012)(1): 12.

[9] E. Andreeva, B. Mennink, B. Preneel& M. Skrobot
(2012), Security Analysis and Comparison of the SHA-

3 Finalists BLAKE, Grostl, JH, Keccak, and Skein.
fromKatholiekeUniversiteit Leuven.

[10] Belgium. E. B. Kavun& T. Yalcin (2012), On the Suit-
ability of SHA-3 Finalists for Lightweight Applica-

tions.from Horst Görtz Institute, Ruhr University, Chair
of Embedded Security, Germany

[11] Brian Philofsky, “HDL Coding and design practices for

improving Virtex-5 utilization, performance, and
power”, XcellJounal, Issue 59, Four Quarter 2006, Xil-

inx.
[12] Guido Bertoni, Joan Daemen, MichaëlPeeters and

Gilles Van Assche.“Keccak sponge function family

main document”, version 1.2, April 2009, available on
line at http://keccak.noekeon.org/.

