
IJCAT International Journal of Computing and Technology
ISSN : 2348 - 6090
www.IJCAT.org

30

Parallel Workload Scheduling in Cloud: A Survey

1
 Shahabanath K K, 2 Sreekesh Namboodiri T

 1 M.Tech student in Computer Science and Engineering, Calicut University,

Kerala, India

2 Assistant Professor in Computer Science and Engineering, Calicut University,

Kerala, India

Abstract - The cloud computing paradigm is attracting an

increased number of complex applications to run in remote data

centers. Scheduling is an important issue in the cloud. The main

goal of scheduling is distribute the load among processors and

maximizing their utilization by minimizing the total task

execution time and also maintaining the level of responsiveness

of parallel jobs. Existing parallel scheduling mechanisms have

some drawbacks such as context switching rate, large waiting

times and large response time. The paper presents a

comparative study on various scheduling algorithms used in the

cloud. This papaer discusses three techniques backfilling, gang

scheduling and migration and also propose a two tier

architecture for workload consolidation.

Keywords - Cloud computing, parallel job scheduling,

FCFS, Gang scheduling, Backfilling, Migration, Aggressive

backfilling, Conservative Backfilling.

1. Introduction

Cloud computing is an on demand service in which

shared resources, information, software and other devices

are provided according to the clients requirement at

specific time. Scheduling jobs is an important issue in the

cloud. There are various scheduling algorithm exist in

cloud computing environment. The main goal of

scheduling algorithm is distribute the load among

processors and maximizing their utilization while

minimizing the total task execution time. The job

scheduler is responsible for assigning preferred resources

to a particular job so that the overall computing resources

are utilized effectively. The application also has to make

sure each job is given adequate amount of resources, or its

fair share.

There two types of scheduling :

• Application scheduling

• Job scheduling

The process of scheduling parallel tasks determines the

order of task execution and the processor to which each

task is assigned. Typically, an optimal schedule is

achieved by minimizing the completion time of the last

task. Two types of scheduling strategies are space sharing

and time sharing. Time sharing techniques virtualizes the

physical machine by slicing the time axis into multiple

virtual machines. Space sharing techniques runs the jobs

side by side on different nodes of the machine at the same

time.

2. Literature Survey

2.1 First-Come-First-Serve

The basic batch scheduling algorithm is First-Come-First-

Serve (FCFS) [5]. Under this algorithm, jobs are

considered in order of arrival. If there are enough

processors are available to run a job, the processors are

allocated and the job is started. Otherwise, the first job in

the queue must wait for some currently running job to

terminate. This may lead to a waste of processing power

as processors sit idle waiting for enough of them to

accumulate.

2.2 Backfilling

Quinn Snell et al. [5] proposed a backfilling scheme.

Backfilling is an space sharing optimization that tries to

balance between the goals of utilization and maintaining

FCFS order. It allows small jobs to move ahead and run

on processors that would otherwise remain idle. This is

done to avoid situations in which the FCFS order is

completely violated and some jobs are never run.

There are two types of backfilling algorithms:

• Conservative Backfilling

• Aggressive Backfilling

IJCAT International Journal of Computing and Technology
ISSN : 2348 - 6090
www.IJCAT.org

31

1) Conservative Backfilling: Ahuva et al. [2] proposed a

conservative backfilling approach. In this scheme, jobs

are scheduled according to the order of arrival time when

there is enough number of processors.If not, another job

with later arrival time and smaller jobs are scheduled to

run. It provides reservation to all jobs and limits the

slowdown.

2) EASY Backfilling: Ahuva et al. [2] also proposed an

aggressive approach, provides a reservation to only the job

at the head of the job queue and only allow job at the head

of the queue can be pre-empt other jobs. It does not have a

guaranteed response time of the user job at the time of job

submission.

2.3 Gang Scheduling

Jonathan Weinberg [7] proposed a main alternative to

batch scheduling is gang scheduling, that schedules

related threads or processes to run simultaneously on

different processors. It is a time sharing optimization

technique. This scheduling is used if two or more threads

or processes are communicate with each other. The

problems with gang scheduling is that the requirement

that all a job’s processes always run together causes too

much fragmentation and context switching overhead.

Gang scheduling is based on a data structure called

ousterhout matrix. In this matrix each row represent a

time slice, and each column represent a processor. The

threads or processes of ajob are packed into a row of the

matrix.

 Fig 2.1 Ousterhout Matrix

2.4 Backfilling Gang Scheduling

Moreiraz et al. [6] proposed a Backfilling gang-

scheduling (BGS) method. It is an optimization technique

which combines gang scheduling and backfilling

scheduling. This scheduling can be done by treating each

of the virtual machines created by gang-scheduling as a

target for backfilling. Which produce better results than

individual approaches gang scheduling or backfilling.

2.5 Migration Gang Scheduling

Moreiraz et al. [6] proposed a Migration Gang

Scheduling method. The process of migration embodies

moving a job to any row in which there are enough free

processors to execute that job. There are two options for

migrate a job from a source row to a target row.

 Fig 2.2 Migration option 1

In the above figure, job A resides in the first row and job

J in the second row occupy the same columns as job A in

first row. Job J migrate to other columns in the same row

and job A is replicated to second row.

 Fig 2.3 Migration option 2

In migration option 2, job A in the first row can be

directly migrate to second row.

2.6 Migration Backfilling Gang Scheduling

Moreiraz et al. [6] proposed a method that the migration

embodies moving a job to any row in which there are

enough free processors to execute that job. If we cannot

replicate a job in a different row because its set of

processors are busy with another job, attempt to move the

blocking job to a different set of processors. A job can

appear in multiple rows of the matrix, but it must occupy

the same set of processors in all the rows. This rule

prevents the ping-pong of jobs.

2.7 Job kill based EASY Backfilling (KEASY)

Xiaogang Qiu et al. [1] proposed a scheduling scheme Job

kill based EASY backfilling (KEASY). It is capable of

dispatching a job to run in background VMs while it is

not qualified for backfilling according to EASY. There is

a chance that the corresponding foreground VMs of those

background VMs are idle during the jobs lifetime, which

leads to performance improvement.

IJCAT International Journal of Computing and Technology
ISSN : 2348 - 6090
www.IJCAT.org

32

2.8 Reservation based EASY Backfilling (REASY)

Xiaogang Qiu et al. [1] proposed a Reservation based

EASY backfilling (REASY) scheme. In this scheme job

kill is not allowed in the scheduling; once a job is

deployed onto background VMs of a set of pro- cessors, its

run is pinned onto this set of processors. Only all the

foreground VMs of this set of processors are available can

this job run in the foreground. For the reservation

making, if a reservation is being made for a job running

in the background tier, the shadow time is the last

termination time of the jobs running in its foreground

VMs; the extra foreground VMs are the ones now idle and

no process of the job is running in their background VMs.

2.9 Conservative Migration Supported Backfilling

Xiaocheng Liu et al. [4] proposed a Conservative

Migration Supported Backfilling (CMBF) , which is same

as Conservative backfilling. Only the difference is, the

scheduler is able to suspend a job and resume it on other

nodes in a later time. This algorithm avoid starving a pre-

empted job. When the number of jobs in the queue is

large, the cost can be high because CMBF requires

tracking backfilling jobs for each job in the queue.

2.10 Aggressive Migration Supported Backfilling

Xiaocheng Liu et al. [4] proposed an An alternative to

CMBF is Aggressive Migration Supported Backfilling

(AMBF). It only tracks backfilling jobs for the job at the

head of the queue and allows the head-of queue job to pre-

empt other jobs. The rest of jobs in the queue are not

allowed to pre- empt jobs.

2.11 Priority-based Consolidation Method

In priority-based method to consolidate parallel workloads

in the cloud, dividing computing capacity into two tiers :

foreground tier and background tier. The VM running in

foreground is assigned a high CPU priority and the VM

running in background is assigned a low CPU priority.

There are two priority-based methods to consolidate

parallel workloads in the cloud: Conservative migration

and consolidation supported backfilling (CMCBF) and

Conservative migration and consolidation supported

backfilling (AMCBF).

1) Conservative Migration and Consolidation supported

BackFilling: Xiaogang Qiu et al. [4] proposed a priority

based consolidation method, Conservative Migration and

Consolidation supported BackFilling (CMCBF). That

allows jobs to run in background VMs simultaneously

with those foreground VMs to improve node utilization. It

ensures that a job is dispatched to foreground VMs

whenever the foreground VMs are idle or that job satisfies

the node requirement. It allows jobs to run in background

VMs simultaneously with those foreground VMs to

improve node utilization. Compared to CMBF, CMCBF

also deals with how to ensure that the background

workload does not affect the foreground job. CMCBF only

dispatches a job to run in background VMs when the

corresponding foreground VMs have a utilization lower

than a given threshold. The foreground VM utilization

can be obtained from the profile of foreground jobs, or

from the runtime monitoring data.

2) Aggressive Migration and Consolidation supported

BackFilling: Xiaogang Qiu et al. [4] proposed another

priority based consolidation method, CMCBF faces

similar problem as CMBF when tracking backfilling jobs

for each job. To reduce the cost, new modified algorithm

is Aggressive Migration and Consolidation supported

BackFilling (AMCBF) [4]. Only the job in head-of queue

can preempt other jobs in AMCBF.

3. Perfomance Analysis

FCFS compared with other algorithms, then it has high

response time and high waiting time. Migration

Backfilling Gang Scheduling achieves better response

time and waiting time than Gang Scheduling,

Backfilling Gang Scheduling and Migration Gang

Scheduling.Response time is higher in Reservation based

EASY backfilling. In terms of waiting time, Key based

EASY backfilling has lower waiting time than EASY but

the waiting time is higher in Reservation based EASY

backfilling.

CMCBF method requires tracking backfilling jobs for

each job in the queue when making pre-emption

decisions. When the number of jobs in the queue is large,

the cost can be high. Simplify this algorithm called

AMCBF to address this problem. In AMCBF, only tracks

backfilling jobs for the job at the head of the queue and

allows the head-of-queue job to pre-empt other jobs. The

rest of jobs in the queue are not allowed to pre-empt jobs.

In AMCBF, there is a delay in the execution of jobs other

than first job in the queue. This algorithm challenging to

achieve responsiveness of parallel jobs and high processor

utilization in the cloud. Another issue in a large data

center is the communication cost is high because the

processes of a job to be allocated to nodes may not be

close to each other.

IJCAT International Journal of Computing and Technology
ISSN : 2348 - 6090
www.IJCAT.org

33

Table 3.1 Perfomance Analysis

Algorithms

Response

time

Waiting

time

Cost

FCFS High High Low

Conservative

BF

High Low High

Aggressive BF Low High Low

Gang

Scheduling

Low High Low

Backfilling GS Low Low Low

Migration GS High High High

KEASY BF High Low High

REASY BF High High High

CMBF High Low High

AMBF High High Low

CMCBF Low Low High

AMCBF Low Low Low

4. Conclusions

REASY produces the worst performance among our

algorithms. The performance is achieved by MEASY

better than KEASY, REASY and EASY. BGS is always

better than MGS . MBGS which combines all techniques

gang-scheduling, backfilling, and migration, provides the

best results. In par- ticular, it can drive utilization higher

than MGS, and achieves better slow down and wait times

than BGS. AMBF achieves better performance than

CMBF. CMCBF and AMCBF, significantly outperform

FCFS, CMBF, AMBF, and EASY on response time and

bounded slowdown. The performance of AMCBF

degrades as the migration cost increases, but AMCBF

bears high migration cost.AMCBF and CMCBF lead to

better node utilization compared to other

algorithms.AMCBF also shows slightly better

performance than CMCBF.

In future work, will exploit a mechanism for further

improve the node utilization and minimize the delays in

the execution of the jobs in the cloud.

References

[1] Xiaogang Qiu, Ying Cai, Xiaocheng Liu, Bin Chen and

Kedi Huang, ”scheduling parallel jobs using migration

and consolidation in the cloud”, Mathematical Problems

in Engineering, July 2012.

[2] Ahuva W. Mu’alem and IEEE Dror G. Feitelson, Senior

Member, ”utilization, predictability, workloads, and user

runtime estimates in scheduling the ibm sp2 with

backfilling”, IEEE Transactions on Parallel and

Distributed system, June 2001.

[3] Xiaogang Qiu, Bing Bing Zhou, Bin Chen, Xiaocheng

Liu, ChenWang and Albert Y. Zomaya, ”backfilling

under two-tier virtual machines”, IEEE International

Conference on Cluster Com- puting, 2012.

[4] Bing Bing Zhou Junliang Chen Ting Yang Xi- aocheng

Liu, Chen Wang and IEEE Albert Y. Zomaya, Fellow,

””priority-based consolidation of parallel workloads in

the cloud”, IEEE Transactions on Parallel and

Distributed system, September 2013.

[5] Quinn Snell, David Jackson and Mark Clement, ”core

algorithms of the maui scheduler”, Work- shop Job

Scheduling Strategies for Parallel Processing, 2001.

[6] J. E. Moreiraz ,A Sivasubramaniamy, Y. Zhangy and H.

Frankez, ”an integrated approach to parallel scheduling

using gang-scheduling, backfilling and migration” IEEE

Transactions on Parallel and Distributed Systems, March

2003.

[7] Jonathan Weinberg, ””job scheduling on parallel

systems”, University of California, San Diego, 2001.

[8] Helen D, Karatza Ioannis, A. Moschakis.”performance

and cost evaluation of gang scheduling in a cloud

computing system with job migrations and starvation

handling”, IEEE, 2011.

[9] Y. Etsion D. Tsafrir and D. Feitelson ”backfilling using

system- generated predictions rather than user runtime

estimates”, volume 18. IEEE Transactions on Parallel

and Distributed Sys tems, 2007.

[10] Mohammad B. Dadfar Hassan Rajaei ””job scheduling

in cluster computing: A student project”, Proceedings of

the 2005 American Society for Engineering Education

Annual Confer- ence Exposition, 2005.

Shahabanath K K received the bachelor’s degree in Information
Technology from the Calicut University, Kerala in 2012. Presently
she is pursuing her M.Tech in the department of Computer Science
and Engineering from Calicut University, Kerala. Her research
interests include Load balancing in cloud, Scheduling in cloud etc.

Sreekesh Namboodiri T received bachelor’s degree in Computer
Science and Engineering from calicut university and master’s degree
in Computer Aided Design from TamilNadu. Currently working as an
Assistant Professor in Computer Science and Engineering
Department, MES College of Engineering, Under the Calicut
University, Kerala.

