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Abstract - Bayesian Networks are used to represent knowledge 
about an uncertain domain. Searching a data or word from a 

database is a random process. Probabilistic theories can be used 
to analyze the data. We use Bayes theorm for recognizing a 
word. The frequency in which the word occurs is the criteria for 
search.  
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I. Introduction 
 

Bayesian networks (BNs), also known as belief networks, 

belong to the family of probabilistic graphical models 

(GMs). These graphical structures are used to represent 

knowledge about an uncertain domain. In particular, each 

node in the graph represents a random variable, while the 

edges between the nodes represent probabilistic 
dependencies among the corresponding random variables. 

These conditional dependencies in the graph are often 

estimated by using known statistical and computational 

methods. Hence, BNs combine principles from graph 

theory, probability theory, computer science, and 

statistics. The structure of a DAG is defined by two sets: 

the set of nodes (vertices) and the set of directed edges. 

 

The nodes represent random variables and are drawn as 

circles labeled by the variable names. The edges represent 

direct dependence among the variables and are drawn by 

arrows between nodes. In particular, an edge from node Xi 

to node Xj represents a statistical dependence between the 

corresponding variables. Thus, the arrow indicates that a 

value taken by variable Xj depends on the value taken by 

variable Xi , or roughly speaking that variable Xi 

“influences” Xj . Node Xi is then referred to as a parent of 

Xj and, similarly, Xj is referred to as the child of Xi . An 

extension of these genealogical terms is often used to 

define the sets of “descendants” – the set of nodes that can 

be reached on a direct path from the node, or “ancestor” 

nodes – the set of nodes from which the node can be 

reached on a direct path. The structure of the acyclic graph 
guarantees that there is no node that can be its own 

ancestor or its own descendent. Such a condition is of vital 

importance to the factorization of the joint probability of a  

 

collection of nodes. Note that although the arrows 
represent direct causal connection between the variables, 

the reasoning process can operate on BNs by propagating 

information in any direction. 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1. Bayesian network modeling that rain is the cause of wet grass 

 

2. Bayes Theorem 
 

Data comes from a process that is not completely known. 

This lack of knowledge is indicated by modeling the 
process as a random process. Maybe the process is actually 

deterministic, but because we do not have access to 

complete knowledge about it, we model it as random and 

use probability theory to analyze it. The extra pieces of 

knowledge that we do not have access to are named the 

unobservable variables. In the coin tossing example, the 

only observable variable is the outcome of the toss. 

Denoting the unobservables by z and the observable as x, 

in reality we have x = f(z) where f(·) is the deterministic 

function that defines the outcome from the unobservable 

pieces of knowledge. Because we cannot model the 
process this way, we define the outcome X as a random 

variable drawn from a probability distribution P(X = x) 

that specifies the process. Tossing a coin is a random 

process because we cannot predict at any toss whether the 

outcome will be heads or tails-that is why we toss . coins, 

or buy lottery tickets, or get insurance. Bayes rule is used 

to calculate the probabilities of classes. 

 

Bayesian learning methods are relevant in machine 

learning for two different reasons. First, Bayesian learning 

Rain 

Wet Grass 
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algorithms that calculate explicit probabilities for 

hypotheses, such as the naive Bayes classifier, are among 

the most practical approaches to certain types of learning 

problems and advantageous than other learning 

algorithms, including decision tree and neural network 

algorithms. The naive Bayes classifier is competitive with 
other learning algorithms in many cases and that in some 

cases it outperforms those methods. It is mainly used to 

classify text documents such as electronic news articles.  

 

Second reason that Bayesian methods are important in 

machine learning is that they provide a useful perspective 

for understanding many learning algorithms that do not 

explicitly manipulate probabilities. 

 

Features of Bayesian learning methods include: 

 

• Each observed training example can 
incrementally decrease or increase the estimated 

probability that a hypothesis is correct. This 

provides a more flexible approach to learning 

than algorithms that completely eliminate a 

hypothesis if it is found to be inconsistent with 

any single example. 

• Prior knowledge can be combined with observed 

data to determine the final probability of a 

hypothesis. In Bayesian learning, prior 

knowledge is provided by asserting (1) a prior 

probability for each candidate hypothesis, and 
(2) a probability distribution over observed data 

for each possible hypothesis. 

• Bayesian methods can accommodate hypotheses 

that make probabilistic predictions. 

• New instances can be classified by combining 

the predictions of multiple hypotheses, weighted 

by their probabilities. 

• Even in cases where Bayesian methods prove 

computationally intractable, they can provide a 

standard of optimal decision making against 

which other practical methods can be measured. 
 

One practical difficulty in applying Bayesian methods is 

that they require initial knowledge of many probabilities. 

When these probabilities are not known in advance they 

are often estimated based on background knowledge, 

previously available data, and assumptions about the form 

of the underlying distributions. A second practical 

difficulty is the significant computational cost required to 

determine the Bayes optimal hypothesis. 

 

In machine learning we are often interested in determining 
the best hypothesis from some space H, given the observed 

training data D. One way to specify what we mean by the 

best hypothesis is to say that we demand the most 

probable hypothesis, given the data D plus any initial 

knowledge about the prior probabilities of the various 

hypotheses in H. Bayes theorem provides a direct method 

for calculating such probabilities. More precisely, Bayes 

theorem provides a way to calculate the probability of a 

hypothesis based on its prior probability, the probabilities 

of observing various data given the hypothesis, and the 
observed data itself. To define Bayes theorem precisely, 

let us first introduce a little notation. We shall write P(h) to 

denote the initial probability that hypothesis h holds, 

before we have observed the training data. P(h) is often 

called the prior probability of h and may reflect any 

background knowledge we have about the chance that h is 

a correct hypothesis. If we have no such prior knowledge, 

then we might simply assign the same prior probability to 

each candidate hypothesis. Similarly, we will write P(D) to 

denote the prior probability that training data D will be 

observed (i.e., the probability of D given no knowledge 

about which hypothesis holds). Next, we will write P(D/h) 
to denote the probability of observing data D given some 

world in which hypothesis h holds. More generally, we 

write P(x/y) to denote the probability of x given y. In 

machine learning problems we are interested in the 

probability P (h/ D) that h holds given the observed 

training data D. P (h/ D) is called the posterior probability 

of h, because it reflects our confidence that h holds after 

we have seen the training data D. Notice the posterior 

probability P(h/D) reflects the influence of the training 

data D, in contrast to  the prior probability P(h), which is 

independent of D. 
 

Bayes theorem is the cornerstone of Bayesian learning 

methods because it provides a way to calculate the 

posterior probability P(h/D), from the prior probability 

P(h), together with P(D) and P(D(h). 

 

                                                                    (1) 

 

                                                                                 (2) 

 

                                                                                  

 

                                                                                  

 

3. Bayesian Recognizer 
 

Words that appear frequently in the language are 

recognized more easily than words that appear less 

frequently. With words of equal frequency, participants 

should have to choose the alternative that best matches the 

target. In the case of low frequency words a random choice 
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has to be done. So in the case of low frequency words 

more random guesses need to be done. 

 

In cases if input is completely unambiguous, its easy to 

select the entry whose representation matches the input. 

The actual implementation of the matching process might 
be very complex, but the optimal strategy is just to select 

the matching word from the lexicon. An optimally 

designed system would be able to match the input against 

all words in the lexicon in parallel, and there would be no 

effect of word-frequency. However, if the input is 

ambiguous, the requirements are different. With 

ambiguous input it is no longer sufficient simply to select 

the best matching lexical entry. Under these circumstances 

we must also take the prior probabilities of the words into 

account.  

 

Starting from knowledge of the prior probabilities with 
which events or hypotheses (H) occur, Bayes theorem 

indicates how those probabilities should be revised in the 

light of new evidence (E). Given the prior probabilities of 

the possible hypotheses P(Hi), and the likelihood that the 

evidence is consistent with each of those hypotheses 

P(E|Hi), Bayes theorem can be used to calculate P(Hi|E), 

the revised, or posterior probability of each hypothesis, 

given the evidence.   

 

 

                                                                              (3) 
 

 

  
In the case of word recognition, the hypotheses will 

correspond to words, and P(H) is given by the frequency 

of the word.The probability that the input corresponds to a 

particular word is then given by the probability that the 

input was generated by that word, divided by the 

probability of observing that particular input. Any 

particular input could potentially be produced by many 

different words. The probability of generating a particular 

input is therefore obtained by summing the probabilities 
that each word might have generated the input.  

 

In the absence of any knowledge of the prior probabilities 

of the words, the best strategy will always simply be to 

choose the word that best matches the input. However, if 

prior probabilities are available, these should be taken into 

account by the application of Bayes theorem.  

 

Words are generally presented clearly under circumstances 

where the participant will have no difficulty in identifying 

the stimulus accurately. However, the critical question is 
not whether the stimulus itself could potentially be 

identified unambiguously, but whether there is ambiguity 

at the point where a decision is made. Participants are 

expected to respond as quickly as possible. Indeed, 

participants generally respond so quickly that they make 

errors. If they respond before they have reached a 

completely definitive interpretation of the input, there will 

necessarily be some residual ambiguity at the point where 

the decision is made. Under these circumstances, 
frequency should still influence responses, even though the 

stimulus itself is presented clearly.   

 

If the recognizer is presented with a noisy representation 

of a word there will be some probability that the word that 

most closely matches the input will not be the correct 

word. If the input most closely matches a low frequency 

word, there is some probability that the input was actually 

produced by another word. If the other word is much more 

frequent than the low frequency word, it may be more 

likely that the input was produced by the less well 

matching high frequency word than the more closely 
matching low frequency word. That is, information about 

word frequency effectively alters the weighting of 

perceptual evidence.  

 

In Bayes theorem the measure of the evidence for a word 

contains the term P(I|W), that is, the probability of 

observing the perceptual input I, given that the word W 

has been presented. P(I|W) could be determined by 

experience. For example, each time a word is encountered 

it will produce some representation Ix at the input of the 

recognizer. The recognizer could learn the probability 
density function (pdf) representing the probability of 

receiving a particular input, given that a particular word 

was presented. For any new input, the system would then 

be able to look up the probability that that input came from 

presentation of a particular word (P(I|W). This is 

effectively how some automatic speech recognition 

systems are trained to recognize words using hidden 

Markov models.  

 

In fact, P(I|W) could be computed from the products of 

P(I|Letter) over letter positions, so there is no need for the 

system to have extensive experience of every word in the 
lexicon.   

 

In effect, frequency in the Bayesian approach acts as a 

bias. For example, in a perceptual identification task, a 

Bayesian recognizer should respond with the word with 

the largest posterior probability. Other things being equal, 

high frequency words would therefore tend to be generated 

as responses more often than low frequency words. 

However, frequency would not improve the perceptual 

sensitivity of the system in terms of its ability to 

discriminate between a pair of words in a forced-choice 
task.  
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High frequency words just require fewer features to 

exceed threshold than do low frequency words  If 

P(I|correct word) is 1.0, and all other P(I|W) are 0.0, then 

frequency P(W) cancels out. The better the perceptual 

evidence, the smaller will be the influence of frequency. 

Frequency can never override reliable perceptual evidence. 
This is clearly a desirable property. No matter how large 

the frequency difference between two similar words, a 

Bayesian decision process will always select the correct 

word when the input is unambiguous.  

 

4. Bayesian Approach in Visual Recognition 
 
The goal is to establish whether some of the most 

important features of visual word recognition can be 

explained simply by assuming that readers approximate 

ideal observers operating on a noisy perceptual input. All 

of the important features of the model follow from this 

simple assumption The Bayesian Reader is the first step in 

this process.  

 

As a first step in assessing the behavior of an optimal word 

recognizer, it is necessary to have an estimate of P(I|W). 

Although P(I|W) could be learned, for the purposes of the 
simulations presented here, we will take a rather different 

approach and assume that P(I|W) can be estimated from 

the current input. This depends on three assumptions:  

 

1. All words can be represented as points in a 

multidimensional perceptual space.  

2. Perceptual evidence is accumulated over time by 

successively sampling from a distribution centered on the 

true perceptual co-ordinates of the input with samples 

being accumulated at a constant rate.  

3. P(I|W) for all words can be computed from an estimate 

of variance of the input distribution  
 

The first assumption follows simply from the fact that 

some words are more easily confused than others. The 

second assumption is that perceptual information were 

completely unambiguous, word frequency should have no 

influence on recognition. The third assumption avoids the 

need to learn the probability density function of P(I|W) for 

individual words. It also helps to keep the model simple 

and general, and avoids making any arbitrary assumptions 

about learning. As successive samples arrive, it is possible 

to compute the mean location and the standard error of the 
mean (SEM) of all samples received so far.  

 

 

                                                             (4) 

 

 

The mean represents a point in perceptual and the SEM is 

computed from the distances between each sample and the 

sample mean. The SEM is measured in units 

corresponding to Euclidean distance in perceptual space. 

Given the form of input being assumed here, I is a 

continuous valued variable whose probability distribution 

is then correctly represented as a density function ƒ(I|W). 

Under these assumptions the equivalent Bayes equation is:  
 

 

                                                     (5) 

 

 

 

 

Where ƒ(I|W) corresponds to the height of the pdf at I. For 

a given I, ƒ(I|W) is called the likelihood function of W. 

When comparing different candidate W's on the basis of 

input I, it is the ratio of the likelihoods that influence the 

revision of the prior probabilities Words that are far away 
from the mean of the input distribution will tend to 

become less and less likely as more samples are 

accumulated. Consequently, P(W|I) of the word actually 

presented will tend to increase, while the P(W|I) of all 

other words will decrease. One noteworthy feature of this 

kind of sampling model is that, given enough samples, 

there is no limit as to how small the SEM can become. In 

the absence of any restrictions on the amount of data 

available (i.e. number of samples), the P(W|I) of a clearly 

presented word will always approach 1.0 in the limit. 

 
For some purposes it may be possible to derive P(I|W), or 

P(Input | Letter) from perceptual confusion matrices, 

rather than estimating them from the input. Note that as 

more perceptual information arrives, P(W) will have less 

and less influence on P(W|I). In the limit, P(I|W) for all 

but the word actually presented will approach 0, and P(W) 

will have no effect whatsoever. However, in general, as 

P(W) gets lower, the number of samples required to reach 

a given P(W|I) will increase. That is, high frequency words 

will be identified more quickly than low frequency words.  

 

It is important to bear in mind that the posterior 
probabilities being calculated here are the probabilities 

that the input is a particular word, given that the input 

really is a word. Because of the properties of the normal 

distribution, the closest word to the input mean will always 

have a probability approaching 1.0 in the limit, even if the 

input does not correspond exactly to any particular word. 

The decision being made is: given that the input is a word, 

which word is it? Even an unknown word will produce a 

high P(W|I) for one existing word in the lexicon. When 

simulating identification of known words, this limitation is 

not a problem. However, consideration of how to handle 
unknown words will become important later when 

modeling lexical decision. 
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5. Conclusion 
 

Bayesian Networks  became popular models in the last 

decade. They have been used for applications in various 

areas, such as machine learning, text mining, natural 

language processing, speech recognition, signal 

processing, bioinformatics, error-control codes, medical 

diagnosis, weather forecasting, and cellular networks. In a 

general form of the graph, the nodes can represent not only 

random variables but also hypotheses, beliefs, and latent 

variables. Such a structure is intuitively appealing and 

convenient for the representation of both causal and 

probabilistic semantics. This structure is ideal for 
combining prior knowledge, which often comes in causal 

form, and observed data. Bayesian Network can be used, 

even in the case of missing data, to learn the causal 

relationships and gain an understanding of the various 

problem domains and to predict future events. 
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