
IJCAT  International Journal of Computing and Technology, Volume 1, Issue 2, March 2014          
ISSN : 2348 - 6090 
www.IJCAT.org 

 

34 

 

Study on Security Breaches in Php Applications 
 
 

1
 Santosh Naidu P, 

2
 Amulya Patcha 

 
1 Computer Networks and Information Security 

 
2 
Computer Networks and Information Security 

 

    
 
 
Abstract - Php-based applications are one of the most 

dominant platforms for delivering information and services 
over Internet today. As they are mostly used for critical 
services, php-based applications become a common and direct 

target for security attacks. Although there are larger number of 
techniques have been developed to strengthen php-based 

applications and mitigate the attacks toward php-based 
applications, there is very slight effort committed to drawing 

connections among these techniques and building a big picture 
of php-based application security research. 
 

This paper surveys the area of php-based application security, 
with the aim of systemizing the already implemented 

techniques into a picture that promotes future research. I 

present the unique aspects in the php-based application 
development which bring underlying challenges for building 

secured php-based applications. Finally, summarizes the 
lessons instructed and discuss future research opportunities in 

the area of php security. 

 

Keywords -  ACMA, XSS, SQL Injection, Remote 

Inclusion. 

 

1. Introduction 
 

World Wide Web has acquired from a system that 

delivers stable pages to a platform that supports 

distributed applications, known as web applications and 

become one of the most prevailing technologies for 

delivering the information and service over the Internet. 

The enhancing popularity of web application can be 

attributed to several factors, which includes remote 

accessibility, cross-platform compatibility, fast 

development, etc. Php which is a scripting language 

used to develop web applications enhances the user 

experiences of php-based applications are better 
interactive and responsive for the developers and 

programmers. 

 

As php-based applications are mainly used to deliver 

security critical services, they become an indirect target 

for security attacks. Many web related applications 

interact with back-end systems like databases, which 

may store sensitive information, the compromise of php-

based applications would result in violating an larger 

amount of information, leading to severe economic 

losses, ethical and legal consequences. Report is 
generated from Verizon [1] which shows that web  

 

 

applications now dominate in both the number of 

offends and the amount of data compromised. Current 

most commonly used web application development and 

frameworks, on the other hand, offer fixed security 

support. Thus securing web application is an error 

prostrate process and requires larger efforts, which could 

be impossible under time-to-market pressure and for 
people with insufficient security skills or awareness. As 

a result, very eminent percentages of web applications 

deployed over the Internet are exposed to security 

breaches. According to a report by the Web Application 

Security Consortium, about 49% of the web applications 

being reviewed contain vulnerabilities of high risk level 

and more than 13% of the websites can be compromised 

completely automatically [2]. A recent report [3] reveals 

that over 80% of the websites on the Internet have had at 

least one serious vulnerability. 

 

Motivated by the urgent need for securing php-based 

applications, a substantial amount of research efforts 

have been devoted into this problem with a number of 

techniques developed for hardening php-based 

applications and mitigating the attacks. 

 

In this paper, survey is done on the state of the art in 

php-based application security, with the target of 

systemizing the existing and also the unknown 

vulnerabilities 

 
The rest of this paper’s structure is as follows. At first 

illustration is done in three essential security properties 

that a secure web application should hold, as well as 

corresponding vulnerabilities and attack vectors in 

Section II. Then,  illustration is done in the evolution of 

vulnerabilities in most widely used open source PHP 

web applications, and also SQL-Injection Security 

Evolution Analysis in PHP in Section III. In Section IV, 

discussed about ACMA (Access Control Model 

Analyzer), a model checking-based tool for the detection 

of access control vulnerabilities and also about RIPS - A 

static source code analyser for vulnerabilities in PHP 
scripts .In Section V, discussion is carried out about 

Realistic Vulnerability Injections in PHP Web 

Applications and securing PHP Based Web Application 

Using Vulnerability Injection .In Section VI, will be 

mentioning some of the vulnerabilities that affect php-



IJCAT  International Journal of Computing and Technology, Volume 1, Issue 2, March 2014          
ISSN : 2348 - 6090 
www.IJCAT.org 

 

35 

 

based applications. Then, in Section VII, concludes with 

future directions for web application security  and finally 

Section VIII ends with paper contributions. 

 

2. Understand WEB Application Security 

Properties, Vulnerabilities and Attack 

Vectors 
 

A secure web application has to satisfy desired security 

properties under the given threat model. In the area of 

web application security, the following threat model is 

usually considered: 1) the web application itself is 

benign (i.e., not hosted or owned for malicious purposes) 

and hosted on a trusted and hardened infrastructure (i.e., 

the trust computing base, including OS, web server, 
interpreter, etc.); 2) the attacker is able to manipulate 

either the contents or the sequence of web requests sent 

to the web application, but cannot directly compromise 

the infrastructure or the application code. The 

vulnerabilities within web application implementations 

may violate the intended security properties and allow 

for corresponding successful exploits. 

 

In particular, a secure web application should preserve 

the following stack of security properties, as shown in 

Fig. 1. Input validity means the user input should be 
validated before it can be utilized by the web application; 

state integrity means the application state should be kept 

untempered; logic correctness means the application 

logic should be executed correctly as intended by the 

developers. The above three security properties are 

related in a way that failure in preserving a security 

property at the lower level will affect the assurance of 

the security property at a higher level. For instance, if 

the web application fails to hold the input validity 

property, a crosstie scripting attack can be launched by 

the attacker to steal the victim’s session cookie. Then, 

the attacker can hijack and tamper the victim’s web 
session, resulting in the violation of state integrity 

property. In the following sections, described the three 

security properties and show how the unique features of 

web application development complicate the security 

design for web applications. 

 

 

 
Figure 1: Pixy architecture plus modifications for Injection Tool 

 

A. Input Validity 
 

Given the threat model, user input data cannot be trusted. 

However, for the untrusted user data to be used in the 

application (e.g., composing web response or SQL 

queries), they have to be first validated. Thus, referred to 

this security property as input validity property: All the 

user input should be validated correctly to ensure it is 

utilized by the web application in the intended way. The 

user input validation is often performed via sanitization 

routines, which transform untrusted user input into 

trusted data by filtering suspicious characters or 

constructs within user input. While simple in principle, it 

is non-trivial to achieve the completeness and 

correctness of user input sanitization, especially when 

the web application is programmed using scripting 

languages. First, since user input data is propagated 

throughout the application, it has to be tracked all the 

way to identify all the sanitization points. However, the 

dynamic features of scripting languages have to be 

handled appropriately to ensure the correct tracking of 

user input data. Second, correct sanitization has to take 

into account the context, which specifies how the user 
input is utilized by the application and interpreted later 

either by the web browser or the SQL interpreter. Thus 

different contexts require distinct sanitization functions. 

However, the weak typing feature of programming 

languages makes context-sensitive sanitization 

challenging and error-prone. 

 

In current web development practices, sanitization 

routines are usually placed by developers manually in an 

ad-hoc way, which can be either incomplete or 

erroneous, and thus introduce vulnerabilities into the 
web application. Missing sanitization allows malicious 

user input to flow into trusted web contents without 

validation; faulty sanitization allows malicious user 

input to bypass the validation procedure. A web 

application with the above vulnerabilities fails to 

achieve the input validity property, thus is vulnerable to 

a class of attacks, which are referred to as script 

injections, dataflow attacks or input validation attacks. 

This type of attacks embed malicious contents within 

web requests, which are utilized by the web application 

and executed later. Examples of input validation attacks 

include cross-site scripting (XSS), SQL injection, 
directory traversal, filename inclusion, response splitting, 

etc. They are distinguished by the locations where 

malicious contents get executed. In the following,  

illustration is done on the most two popular input 

validation attacks.  

 

1) SQL Injection: A SQL injection attack is successfully 

launched when malicious contents within user input 

flow into SQL queries without correct validation. The 

database trusts the web application and executes all the 

queries issued by the application. Using this attack, the 
attacker is able to embed SQL keywords or operators 

within user input to manipulate the SQL query structure 

and result in unintended execution. Consequences of 

SQL injections include authentication bypass, 

information disclosure and even the destruction of the 

entire database. Interested reader can refer to [7] for 

more details about SQL injection.  

 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue 2, March 2014          
ISSN : 2348 - 6090 
www.IJCAT.org 

 

36 

 

2) Cross-Site Scripting: A cross-site scripting (XSS) 

attack is successfully launched when malicious contents 

within user input flow into web responses without 

correct validation. The web browser interprets all the 

web responses returned by the trusted web application 

(according to the same-origin policy) Using this attack, 

the attacker is able to inject malicious scripts into web 

responses, which get executed within the victim’s web 

browser. The most common consequence of XSS is the 

disclosure of sensitive information, e.g., session cookie 

theft. XSS usually serves as the first step that enables 

further sophisticated attacks (e.g., the notorious 

MySpace Samy worm [8]). There are several variants of 

XSS, according to how the malicious scripts are injected, 

including stored/persistent XSS (malicious scripts are 

injected into persistent storage), reflected XSS, DOM-

based XSS, content-sniffing XSS [9], etc. 

 

B. State Integrity 
 

State maintenance is the basis for building stateful web 

applications, which requires a secure web application to 

preserve the integrity of application states. However, 

The involvement of an untrusted party (client) in the 

application state maintenance makes the assurance of 

state integrity a challenging issue for web applications. 

A number of attack vectors target the vulnerabilities 
within session management and state maintenance 

mechanisms of web applications, including cookie 

poisoning (tampering the cookie information), session 

fixation (when the session identifier is predictable), 

session hijacking (when the session identifier is stolen), 

etc.  

 

Cross-site request forgery (i.e., session riding) is a 

popular attack that falls in this category. In this attack, 

the attacker tricks the victim into sending crafted web 

requests with the victim’s valid session identifier, 
however, on the attacker’s behalf. This could result in 

the victim’s session  being tampered, sensitive 

information disclosed (e.g., [10]), financial losses (e.g., 

an attacker may forge a web request that instructs a 

vulnerable banking website to transfer the victim’s 

money to his account), etc. To preserve state integrity, a 

number of effective techniques have been proposed [11].  

 

Client-side state information can be protected by 

integrity verification through MAC (Message 

Authentication Code). Session identifiers need to be 

generated with high randomness (to defend against 
session fixation) and transmitted over secure SSL 

protocol (against session hijacking). To mitigate CSRF 

attacks, web requests can be validated by checking 

headers (Referrer header, or Origin header [12]) or 

associated unique secret tokens (e.g., NoForge [13], 

RequestRodeo [14], BEAP [15]). Since the methods of 

preserving state integrity are relatively mature, thus 

falling beyond the scope of this survey. 

 

C. Logic Correctness 

 
Ensuring logic correctness is key to the functioning of 

web applications. Since the application logic is specific 

to each web application, it is impossible to cover all the 

aspects by one description. Instead, a general description 

that covers most common application functionalities is 

given as follows, which referred to as logic correctness 

property: Users can only access authorized information 

and operations and are enforced to follow the intended 

workflow provided by the web application.  

 

To implement and enforce application logic correctly 
can be challenging due to its state maintenance 

mechanism and “decentralized” structure of web 

applications. First, interface hiding technique, which 

follows the principle of “security by obscurity”, is 

obviously deficient in nature, which allows the attacker 

to uncover hidden links and directly access unauthorized 

information or operations or violate the intended 

workflow. Second, explicit checking of the application 

state is performed by developers manually and in an ad-

hoc way. Thus, it is very likely that certain state checks 

are missing on unexpected control flow paths, due to 
those many entry points of the web application. 

Moreover, writing correct state checks can be error-

prone, since not only static security policies but also 

dynamic state information should be considered. Both 

missing and faulty state checks introduce logic 

vulnerabilities into web applications. 

 

A web application with logic flaws is vulnerable to a 

class of attacks, which are usually referred to as logic 

attacks or state violation attacks. Since the application 

logic is specific to each web application, logic attacks 

are also idiosyncratic to their specific targets. Several 
attack vectors that fall (or partly) within this category 

include authentication bypass, parameter 

tampering, forceful browsing, etc. There are also 

application specific logic attack vectors. For example, a 

vulnerable ecommerce website may allow a same 

coupon to be applied multiple times, which can be 

exploited by the attacker to reduce his payment amount.  

 

3. Evolution of Php Web Application 

Security and SQL Injection Security 

Evolution Analysis in Php 

 

Web applications are mainly subjected to massive 

attacks, with vulnerabilities found easily in both open 

source and commercial applications as showed by the 

fact that approximately maximum number of 

vulnerabilities are found in web applications. And also 

investigate whether complexity metrics or a security 

resources indicator (SRI) metric can be used to identify 

vulnerable web application showing that average 

cyclomatic complexity is an effective predictor of 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue 2, March 2014          
ISSN : 2348 - 6090 
www.IJCAT.org 

 

37 

 

vulnerability for several applications, especially for 

those with low SRI scores.[16] 

 

Web sites are often a mixture of static sites and 

programmes that integrate comparative databases as a 

back-end. Software that implements Web sites 

continuously evolve, newer versions of programs, 

interactions and functionalities are summed up and 

existing ones are removed or modified. Websites require 

configuration and programming attention to assure 

security, confidentiality, and trustiness of the 

promulgated information. During evolution of Web 

software, from one version to the next one, security 

breaches may be introduced, corrected, or ignored. [17] 

 

4. ACMA - A Model Checking-Based Tool 

for Detection of Access Control 

Vulnerabilities in and Rips 
 

Access control vulnerabilities in php-based web 

applications are on the advance. In 2010 “Top 10 Most 
Critical Web Applications Security Risks”, the OWASP 

reported that the prevalence of access control 

vulnerabilities in web applications increased compared 

to 2007. However, in counterpoint to SQL injection and 

cross-site scripting breaches, access control 

vulnerabilities comparatively received very less 

attention from the research area. One of the main 

challenges for the detection of access control 

vulnerabilities lies in the identification of pages that 

should have a restricted access. Recently,[18] some 

researchers [4], observed that privileged pages are rarely 

left entirely unprotected. They argue that access control 

vulnerabilities usually occur because of “hidden” 

execution paths that lack access control checks rather 

than because of a complete absence of access control. 

For example, web applications will typically hide links 

to privileged pages from unprivileged users. While this 

is a good practice, it is not sufficient to ensure security, 

as a malicious user can guess the URL of the hidden 

page and access the privileged information through this 

“hidden” path. In the context of this paper, we refer to 

this kind of access control vulnerabilities as “forced 

browsing” vulnerabilities. Forced browsing 
vulnerabilities are a subset of “hidden” paths 

vulnerabilities in access control models. The term was 

introduced by Sun et al. [5] as they were the first to 

tackle the automatic identification of such security flaws.  

 

In order to contain the risks of vulnerable web 

applications source code has to be reviewed by the 

developer or by penetration testers. Mentioned in the 

fact that many applications can have thousands of 

codelines and time is determined by costs, a manual 

source code review might be incomplete. Tools can help 

penetration testers to minimize time and costs by 

automating time intense processes while reviewing a 

source code. the concept of web [6] application 

vulnerabilities is introduced and how they can be 

detected by static source code analysis automatically. 

Also a tool was developed named RIPS is introduced 

which automates the process of identifying potential 

security breaches in PHP source code. RIPS is open 

source and freely available at source forge website. The 

result of the analysis can easily be reexamined by the 

penetration tester in its circumstance without reviewing 

the whole source code again. [19] 

 

5. Realistic Vulnerability Injections in Php 

Web Applications and Securing using 

Vulnerability Injections 
 

Vulnerability injection is a field that has received 

relatively little attention by the research community, 

probably because its objective is apparently contrary to 

the purpose of making applications more secure. It can 

however be used in a variety of areas that make it 

worthy of research, such as the automatic creation of 

educational examples of vulnerable code, testing defense 

in depth mechanisms, and the evaluation of both 
vulnerability scanners and security teams.A prototype 

implementing the architecture was developed and 

evaluated to analyze the feasibility of the architecture. 

The prototype targets PHP web applications.[20] 

 

This study shows that the vulnerabilities that the 

prototype is able to inject in applications which results 

in maximum number of vulnerabilities that appear in 

PHP-based web applications. Finally, several 

applications were used in the evaluation and were 

subjected to injections using the prototype, after which 

they were analysed by hand to see whether a 

vulnerability breach was raised or not. The results show 

that the prototype can not only inject a great amount of 

vulnerabilities but that they are actually attackable. The 

architecture from Figure 2[21] shows the original Pixy 

architecture in dark with the modifications in red. 

 
 

Figure 2: Pixy architecture plus modifications for Injection Tool 



IJCAT  International Journal of Computing and Technology, Volume 1, Issue 2, March 2014          
ISSN : 2348 - 6090 
www.IJCAT.org 

 

38 

 

6. Vulnerabilities that Affect Php-Based 

Applications 

 
Table 1: Most common vulnerabilities in php-based applications 

 

1 Cross Site Scripting vulnerabilities 

2 Security Bypass vulnerabilities 

3 Multiple Directory Traversal vulnerabilities 

4 Remote Command Injection vulnerabilities 

5 Parameter Cross Site Scripting vulnerability 

6 Local File Inclusion vulnerabilities 

7 SQL Injection vulnerabilities 

8 Webtester multiple vulnerabilities 

9 Remote File Inclusion vulnerabilities 

10 Database Injection vulnerabilities 

 

7. Future Directions of Php-Based   

Application Security 

This paper provided a comprehensive survey of recent 

research papers in the area of php-based application 
security and described unique characteristics of php-

based application development, identified important 

security properties that secure applications should 

preserve and also pointed out several open issues that 

still need to be addressed. After surveying several papers 

about vulnerabilities in php, I would like to identify 

more unknown vulnerabilities that affect the php 

applications and also counter-measures to eradicate them 

as a future direction of approach in securing php-based 

applications. 

 

References 
 

[1] Verizon 2010 Data Breach Investigations Report, 

http://www.verizonbusiness.com/resources/reports/rp20
10-databreach- report en xg.pdf. 

[2] Web Application Security Statistics, 
“http://projects.webappsec.org/w/page/13246989/Web 

Application SecurityStatistics.” 

[3] WhiteHatSecurity,“WhiteHat website security statistic 
report 2010.” 

[4]  F. Sun, L. Xu, and Z. Su, “Static detection of access 
control vulnerabilities in web applications,” in 

USENIX Security, 2011, pp. 155–170. 
[5]  S. Son, K. McKinley, and V. Shmatikov, “Rolecast: 

finding missing security checks when you do not know 

what checks are,” in OOPSLA ’11. ACM, 2011, pp. 
1069–1084. 

[6]  MySpace Samy Worm, 
http://namb.la/popular/tech.html,, 2005. 

[7]  W. G. Halfond, J. Viegas, and A. Orso, “A 

Classification of SQLInjection Attacks and 
Countermeasures,” in Proc. of the International 

Symposium on Secure Software Engineering, March 
2006. 

[8]  MySpace Samy Worm, 

http://namb.la/popular/tech.html, 2005. 
[9]  A. Barth, J. Caballero, and D. Song, “Secure content 

sniffing for web browsers, or how to stop papers from 

reviewing themselves,” in Oakland’09: Proceedings of 
the 30th IEEE Symposium on Security and Privacy, 

2009, pp. 360–371. 
[10]  Gmail CSRF Security Flaw, “http://ajaxian.com/ 

archives/gmail-csrfsecurity- flaw,” 2007. 

[11]  M. Johns, “Sessionsafe: Implementing xss immune 

session handling,”in ESORICS’06: Proceedings of the 
11th European Symposium On Research In Computer 
Security, 2006. 

[12]  A. Barth, C. Jackson, and J. C. Mitchell, “Robust 
defenses for cross-site request forgery,” in CCS’08: 

Proceedings of the 15th ACM conference on Computer 
and communications security, 2008, pp. 75–88. 

[13]  N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing 

cross site request forgery attacks,” in SecureComm’06: 
2nd International Conference on Security and Privacy 

in Communication Networks, 2006, pp. 1 –10. 
[14]  M. Johons and J. Winter, “Requestrodeo: Client-side 

protection against session riding,” in OWASP AppSec 

Europe, 2006. 
[15]  Z. Mao, N. Li, and I. Molloy, “Defeating cross-site 

request forgery attacks with browser-enforced 
authenticity protection,” in FC’09: 13 th International 

Conference on Financial Cryptography and Data 
Security, 2009, pp. 238–255. 

[16] An Empirical Study of the Evolution of PHP Web 

Application Security By Maureen Doyle, James 
Walden (2012 Third International Workshop on 

Security Measurements and Metrics). 

[17] SQL-Injection Security Evolution Analysis in PHP 
By Ettore Merlo*, Dominic Letarte, Giuliano Antoniol. 

[18] Fast Detection of Access Control Vulnerabilities in 
PHP Applications By Franc¸ois Gauthier, Ettore Merlo 

(2012 19th Working Conference on Reverse 
Engineering). 

[19] RIPS - A static source code analyser for vulnerabilities 
in PHP scripts By Johannes Dahse, 2010. 

[20] Realistic Vulnerability Injections in PHP Web 

Applications By Francisco José Marques Vieira, 2011. 
[21] Securing PHP Based Web Application Using 

Vulnerability Injection By Jamang Jayeshbha Bhalabha, 
2013 


