IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014

ISSN : 2348 - 6090
www.lJCAT.org

User Deadline Based Job Scheduling in Grid
Computing

' S.Gokul Dev, 2 R.Lalith Kumar

! Associate Professor, Department of computer science and engineering, SNS College of engineering,
Coimbatore-641035,Tamilnadu.

UG Scholar, Department of computer science and engineering, SNS College of engineering,
Coimbatore-641035, Tamilnadu.

Abstract - Grid computing is a form of distributed computing
that co-ordinates and provides the facility of resource sharing
over various geographical locations. Resource scheduling in Grid
computing is a complex task due to the heterogeneous and
dynamic nature of the resources. Bacterial foraging has recently
emerged as a global optimization algorithm for distributed
optimization and control. Since virtualization, despite its benefits
incurs a performance penalty, which could be significant for
systems dealing with uncertainty such as High Performance
Computing (HPC) applications where jobs have tight deadlines
and have dependencies on other jobs before they could run. We
present a novel approach to optimize job deadlines when run in
virtual machines by developing a deadline-aware algorithm that
responds to job execution delays in real time, and dynamically
optimizes jobs to meet their deadline obligations. A novel
bacterial foraging based hyper-heuristic resource scheduling
algorithm based on deadline has been designed to effectively
schedule the jobs on available resources in a Grid environment.
The performance of the proposed algorithm has been evaluated
with the existing bacterial foraging based hyper-heuristic based
scheduling algorithms through the GridSim toolkit. The
experimental results show that the proposed algorithm
outperforms the existing algorithms by minimizing cost and
makespan of user applications submitted to the Grid.

Keywords - Grid computing, Job scheduling, Meta heuristic,
Hyper heuristic, User deadline.

1. Introduction

Distributed computing, which has several processors and
each processor has separate memory was developed first.
If a particular component fails then the job assigned to that
component will not be executed. This disadvantage let to
the development of the parallel computing when a single
memory is shared among all processors and even if a
processor fails then the job assigned to that processor can
be reassigned to another processor. Since parallel
computing can perform only less number of jobs and
considering its limitations, cluster computing was

83

developed in which it clusters several parallel computers
connecting them with high speed network such as LAN or
WAN. A virtual organization in grid computing is the
dynamic way of organizing the cluster to define the
resource sharing rules. This virtual organization when
combined with cluster computing forms the grid
computing. The advancement in grid allowing it to
perform online by service oriented method is called as

cloud computing.

Cloud computing

A

Grid computing

4

Virtual organization

4

Cluster computing

P

Parallel computing

4

Distributed computing

One fine example of grid computing is the project
GARUDA which connects nearly 45 institutions in India
including all IIT’s. It helps share information’s among
these institutions at a faster rate and with very low cost. A
grid computing is highly secured and it can either be used
within an institute or an organization or a particular
community. When grid computing needs to be used for a
wider range then it combines several cluster computers to

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014

ISSN : 2348 - 6090
www.lJCAT.org

cover those area. A grid computing uses CPU computation
and not the service like in cloud computing. Grid
technologies promise to tackle complex computational
issues. Grid computing permits the virtualization of
distributed computing and data resources such as
processing, network information measure and storage
capacity to form a single system image, granting users and
applications seamless access to large IT capabilities. At its
core, grid computing relies on associate degree open set of
standards and protocols e.g., open Grid Services
Architecture (OGSA) that change communication across
heterogeneous, geographically distributed environments.
When you deploy a grid, it will be to meet a collection of
customer necessities. To raise match grid computing
capabilities to those necessities, it is useful to keep in mind
the reasons for victimization grid computing. This section
describes the foremost vital capabilities of grid computing.

2. Various Stages of Grid Computing

The first process in grid computing is to schedule the
incoming jobs so that the order in which they should be
executed to obtain a better result can be determined. A
load balancing process is used to balance the input load to
the server based on its capacity. A monitoring is done to
ensure that the process that is the jobs and the resources
are running smoothly without any glitch. In this paper the
monitoring work is done by the portal itself. Once if a fault
has been occurred, then that fault needs to be identified
and it should be rectified as soon as possible. After the
rectification process the method to tolerate further
occurrence of fault must be implemented. In this paper
only the first stage is handled by a method that gives the
best result in scheduling of jobs.

Job scheduling

¥

Load balancing

¥

Monitoring

¥

Fault identification

"

Fault rectification

!

Fault tolerance

84

3. Related Works

[1] Describes the uses of gridsim and the functions in
which they can be executed and most of the work in
implementation is described in this package. [2][3] Are
survey papers which help understand the concepts of grid
computing and the scheduling strategies. It also describes
the difference between grid and various other computing
concepts. Various algorithms are compared and their
results are graphed and the optimal solution is found. [4]
Implements the conception of particle swarm optimization
that suggests Meta heuristic search. It selects the optimum
solution in an exceedingly single search based on the
fitness value by repeating those values into classes like
population test and global test. [5] Introduces an idea in
genetic rule that is once more a Meta heuristic like choice,
cross over, fitness and mutation. [6] Planned suffrage
algorithm within which the roles are assigned to the
resources and if the roles cannot be executed in that
resource than that jobs suffers pretty much. Suffrage value
calculated is employed to perform the task. [7] Planned an
idea of bacterial foraging optimization which supports the
fitness functions. The roles are allotted to the resources of
which solely minimum fitness worth relies, deleting the
utmost fitness value.

4. Existing Reference Algorithms

4.1 Particle Swarm Optimization (PSO)

Particle Swarm optimization (PSO) simulates the
behaviors of bird flocking. PSO learned from the state of
affairs and used it to resolve the optimization issues. In
PSO, each single resolution may be a "bird" within the
search house, called as "particle". All of particles have
fitness values which square measure evaluated by the
fitness function to be optimized, and have velocities which
direct the flying of the particles. The particles fly through
the problem house by following the current optimum
particles. PSO is initialized with a bunch of random
particles (solutions) then searches for optima by updating
generations.

4.2 Genetic Algorithm (GA)

Genetic algorithmic rule primarily based meta-heuristics
follow the Darwin’s natural selection law i.e. only the
fittest will survive. GA a population-based meta-heuristic,
was created by John Netherlands and produces
consequent generation with the techniques inspired by
evolutionary biology, like inheritance, mutation,
crossover, and selection. GA considers associate degrees
as an organism; therefore better the standard of the answer
higher is the survival chance, through crossover (also
called recombination) and mutation. GA will escape from

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014

ISSN : 2348 - 6090
www.lJCAT.org

the local best to search for the global best. In this paper,
we have a tendency to propose a genetic algorithmic rule
for job planning to address the heterogeneousness of
security mechanism in a procedure grid.

4.3 Suffrage Algorithm (SA)

Suffrage is that a task should be appointed to a certain
resource and if it doesn't attend that resource, it will suffer
the foremost. For each task, its franchise worth is defined
because the difference between its best Minimum
Completion Time (MCT) and its second-best MCT. Tasks
with high franchise worth take precedence throughout
programing. In franchise, the minimum and second
minimum completion time for each job square measure
found in first step. The difference between these 2 worth’s
is defined as franchise value. In second step, the task with
maximum franchise worth is appointed to corresponding
machine with minimum completion time.

5. Architecture

User

=
8-

Portal

GIS

A User
a2tz
CDmPutatlDﬂ

Grid application

Cmp utation result

jobs . i

4.4 Bacterial Foraging Optimization (BFO)

The Bacteria Foraging Optimization (BFO) algorithmic
program was planned by Passino et al.It’s a population-
based numerical improvement algorithmic program
supported hunting behavior of E. coli bacterium. E.coli
bacterium features a system that directs its behavior in
food hunting. In the hunting theory, the objective of the
animal is to look and acquire nutrients during a fashion
that energy intake per unit time (E/T) is maximized.
Hunting is a process during which a group of bacterium
moves in search of food during a region, they decide
whether to enter into an attainable food region and seek for
a new food region so on to get a high quality of nutrients.
The Bacteria Foraging Optimization process consists of 4
main mechanisms: taxis, Swarming, replica and
Elimination-dispersal event.

Grid Information Server collects the
details of the available Grid resouices
and passes the mformation to the
resource broker

l:,Lllu'.'l-'."‘

Frocessed jobs

[T T A Y

Resource Broker

Grid Resources

A Portal iz uzed to
dizplay the status
of the process.

A Resource Broker dizstribute the jobs in an
apphcation to the Gud resources based on uzer:
QoS requirements and details of available Gnd

rezonurces for further exzecntions.

Grid Resources (Closter, PC,
Jupercomputer, database,
mnstroments, etc.)

Fig.1 Architecture for grid scheduling

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014

ISSN : 2348 - 6090
www.lJCAT.org

The programing in grid environment where the roles are
allocated to the resources is shown within the fig. at first
the user provides the input of variety of jobs and therefore
the variety of resources to the portal which is used to show
the standing of the programing process. In order of any
system failure or shy resource the user is warned by the
portal. The portal sends data to the resource broker which
performs the programing process by obtaining the
information regarding the resources current standing from
Grid information Server (GIS) which periodically updates
its information regarding the resources. Once the
information’s are gathered the resource broker sends the
machine jobs to the resources the roles are processed and
therefore the computed results are sent back to the broker
who again sends the result to the portal from which the
user gets the result.

Once job is processed the GIS is updated and therefore the
resource broker allocates the resource to ensuing job.
During this environment the hyper heuristic method is
implemented in which the resource broker performs
multiple gathering of data from the GIS and therefore the
best one is chosen for the work.

6. Problems of the Existing System

The problem of finding the most effective resources for a
selected job is incredibly tedious particularly in meta
heuristic technique where just one search is performed
however this is overcome in hyper heuristic technique
where multiple searches are done that chooses the most
effective resources for a job therefore improves the
resource utilization. By Hyper heuristic technique, the
resource utilization may be achieved nice however the
time to settle on the most effective resource is drastically
raised therefore it also allocates the job with a resource
utilizing high information measure. This can raise the
price to execute a job and also raises the hardware
execution time.

The hyper heuristic technique maybe smart for low
number if inputs however when the jobs and resources are
high, then the execution runs out of time and also grid
system is usually utilized for a colossal processing of jobs
and they don't persist with small works. The client that
provides the request needs to do its work with minimum
cost however the server that allocates its resources to the
job needs to minimize the makespan. By using hyper
heuristic technique, mostly the servers are benefited than
the client. Therefore the hyper heuristic technique tries to
beat the disadvantage by calculative the fitness price and
therefore the higher values are eliminated and only] y the
lower values are thought-about. On the other hand the time
consumption cannot be reduced. This can be overcome by

86

using the point in time primarily based hyper heuristic
technique.

7. Proposed Algorithm

We have bestowed a rule referred to as point in time based
mostly Hyper Heuristic methodology. In this rule a
replacement idea referred to as the point in time is
employed, wherever the user requests the utmost
completion time for his job and servers apportion the roles
to the resources specified, those jobs are executed among
the period. There could also be cases once bound jobs
cannot be executed among that time amount, thus those
jobs can cross the limit fixed for a number of extents. This
methodology can improve both resource utilization and cut
back the C.P.U. execution time.

7.1 Procedural Steps

1. Each resource to be regular for application’s
execution has a unique id.

2. Jobs are executed independently.

3. Arrival of jobs for execution of application is
random and jobs are placed in a queue of
unexpected jobs.

4. The computing capacity/speed of the resources is
measured in multiple instructions Per Second
(MIPS) as per the standard Performance analysis
Corporation (SPEC) benchmark.

5. The processing requirement of job is measured in
Million instructions (MI).

8. Tools Used

The GridSim toolkit provides a comprehensive facility for
simulation of different classes of heterogeneous resources,
users, applications, resource brokers, and schedulers. It
can be used to simulate application schedulers for single or
multiple administrative domain distributed computing
systems such as clusters and Grids. Application schedulers
in the Grid environment, called resource brokers, perform
resource discovery, selection, and aggregation of a diverse
set of distributed resources for an individual user. This
means that each user has his or her own private resource
broker and hence it can be targeted to optimize for the
requirements and objectives of its owner. In contrast,
schedulers, managing resources such as clusters in a single
administrative domain, have complete control over the
policy used for allocation of resources. This means that all
users need to submit their jobs to the central scheduler,
which can be targeted to perform global optimization such

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014

ISSN : 2348 - 6090
www.lJCAT.org

as higher system utilization and overall user satisfaction
depending on resource allocation policy or optimize for
high priority users.

9. Experimental Results and Comparison

In this paper we have compared the results of various
algorithms like Genetic Algorithm (GA), Suffrage
Algorithm (SA), Particle Swarm Optimization (PSO),
Bacterial Foraging Optimization (BFO) and User Deadline
Algorithm (UDA). In these entire algorithms the first step
involves the resource allocation process and then
initializing the gridsim package. The Grid Information
Server (GIS) is created and the routers are initialized. The
resources are identified by a unique Resource ID.

In Genetic Algorithm (GA), the resources are grouped and
the fitness value is calculated. The resource group is
crossover and the fitness value is found. The results of the
fitness functions are sorted and the resources with least
fitness value are chosen to execute the job.

In a Suffrage Algorithm (SA) the expected execution time
and suffrage value are calculated. Based on the suffrage
value the jobs are allocated to the resources. In Partial
Swarm Optimization (PSO) the pbest value which is the
fitness value is calculated and the best fitness value is
called as gbest and with that value the resources are
allocated to the job.

A Bacterial Foraging Optimization (BFO) is similar to
PSO but the fitness function for the same resource and
jobs is performed several times in order to find the best
one. The number of searches that should be performed I
specified by the user. The lowest fitness value is taken.

In User Deadline Algorithm (UDA), the user specifies the
tie within which the jobs should be executed. If any jobs
cannot be executed within that time then the time may
exceed for a certain limit. These five algorithms are
compared and the results conclude that UDA gives better
results than the rest.

9.1 Requirements

The parameters and their values required for the
scheduling process are,

Table 1 Parameter requirements

PARAMETERS VALUES
Gridlet size 100000
Gridlet length 42000000
Cost per second 1
No. of routers assigned 2
No. of GIS assigned 3

87

No. of grid users 7

The fitness function is defined by the amount of
instructions transferred per second and the gridlets are the
packages that contain all the information about the job and
the resources. The processing rate of gridlets is measured
in Million Instructions (MI). The number of resources and
the jobs are user defined. The file size is not limited; they
can be of any size.

The various existing algorithms are compared by defining
the number of resources and jobs to be 5 and their results
are tabulated.

9.2 Screen Shots of Bacterial Foraging Algorithm

NOOFRESOURCE: 5
EXIT

SUBMIT

NO OF JOBS: 5

Starting Resource Allocation.
Initializing GridSim package
Reading netwark from C:L
Creating a Regional_GIS_0 wih id =8

Created a REGIONAL GIS with name Regional_GIS_0 and id =8, connected o Router1
Creating a Regional_GIS_1with id = 12

Created a REGIONAL GIS with name Regional_GIS_1 and id = 12, cannected to Routerd
Creating a Regional_GIS_2 with id = 16

Created a REGIONAL GIS with name Regional_GIS_2 and id = 16, cannected to Routerd
Created Res_0 with id = 20, linked to Router1 and registered to Regional_GIS_2
Created Res_1 with id = 25, linked to Router0 and registered to Regional_GIS_1
Created Res_2 with id = 30, linked to Router1 and registered to Regional_GIS_2
Created Res_3with id = 35, linked to Router0 and registered to Regional_GIS_0
Created Res_4 with id = 40, linked to Router0 and registered to Regional_GIS_1

J>

Downloads\C: o

Fig. 2 Resource allocation and package initialliation

EXPECTED EXECUTION TIME MATRIX

RID J1 Jz2 J3 J4 J&

1 8.544 36.79 20928 13.57 4815
2 27.904 4129 35477 0.364 26.768
3 10.301 27.091 35223 45804 5185
4 4.901 7.684 48703 27.487 5794
5 32198 4522 40.284 45232 4215
G 10.931 12716 20.952 4.017 3198
7 3.901 4718 15.467 13.756 34,479
8 2128 24 633 46.221 22704 27767
9 21.541 4912 13136 36548 45 956
10 8.957 5432 36.0 41172 35201
1 10.654 30917 17.328 16.795 32.028
12 49.431 10.86 27.607 2.297 18.939
RID Cost Time

1 29.264 12,506

2 0.852 0.364

3 24104 10,301

4 36.918 18777

5 53.965 23.062

LS I

7
Fig. 3 Calculating expected execution time and best execution time

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014
ISSN : 2348 - 6090
www.lJCAT.org

A
Bacterial foraging based hyper-heuristic r Mo Of Resource:: | 12 1 29.005 28.47 0.164 12617
2 3249 26.201 48397 14282
3 40.965 4846 24212 32242
plebtiohs 43 4 40.402 0764 49,93 44374
RID JID FITNESS 5 34506 34.949 32333 28.058
Bacterial1 [3 117 72 52 14.437
) SUBMIT Input =)
7 0 4921156 P
3 0 52.69517999999999 1 ETETHE LA ERE 8779
Bacterial2 1 a 0.357
1 - 758
[0 581828 [0k | | cancal
4 0 77.02708
Bacterial3
1 0.384 0.164 1815.0
10 0 35.58436 2 3342 14262 13730
4 1] T77.02708 3 2358 10.077 825.0
After sorting 4 1788 0764 2051.0
. -] 25412 10.86 1020.0
6581828 6 24.455 10.451 1869.0
T 2497 1.067 605.0
1023558436 8 2527 1.08 1124.0
9 26.079 11.145 629.0
. 10 43.943 18.779 1583.0
7049.21156 1" 0.147 0.063 558.0
| 12 0.307 0.131 1742.0
3 52.69517999999399 EAS
4 7702708 Fig.7 Number of Searchs to be done
Fig. 4 Various searches performed with job 0 on resources and sorting
No Of Resource: 13
those results X 12 o450555
Search4
e e e e Mo Of Jobs:: 12
X) o After sorting
Bacterial foraging based hyper-heuristic 1 45.808000000000005
AR R A AR AR AR A A A AR A A A AR R A AR A AR A A AR A AR A AR AR A A A AR AR A AR AR AR AR AR A AR AR A AL ﬂj G 4581144
3. 6458558
JOB Resource ID Cost CPU time 3164 58568
U 10[' 49758?5 5254032 User Deadline based hyper-heuristic
1 25 3222078 6357.032
JoB Resource Cost CPUTIME
2 25 3222078 6357.032) he e o
4 25 3222078 G357.032 ! 45 4522629 2076
2 45 4522529 2982
3 50 4967 298 6772494 4 25 2609.75 3159
R . . . 3 45 4522529 3402
Fig.5 Calculating cost and CPU time 7 50 523467 3401
. . 8 60 6234 61 2608
9.3 Screen shorts of User Deadline Algorlthm 5 45 4522529 2530
9 20 1536.584 2773
MNo Of Resource: 12 1 29.005 28.47 0.164 12617 10 65 4071.661 2929
2 32.49 26.201 48.397 14.282 " 25 2609.75 3764
3 40965 43846 24212 32242 | 6 45 4522.529 2801
[EEiEs a3 4 40.402 0764 40,03 44374 <
5 34506 34949 32333 28.058
— 6 11.733 8.372 8.352 14.437
Pm—— 7 12085 97,482 2748 7916 Fig.8 calculating cost and CPU time for User Deadline Algorithm
8 28 700 18932 Z61 5,108
9 | Input =)
10 9 .
j‘; Enter The DeadLine of the Task: 4 9‘4 CPU Tlme
13000 |
- | | Table 2Time Comparison Table
: PARAMETE | GA SA | PSO | BFOH | UD
2 3342 14282 13730
3 2358 10.077 825.0 R H HH
4 1788 0.764 2051.0
5 25412 10.86 1020.0 Jl 726 731 717 641 1 340
6 24.455 10.451 1869.0
4 2.497 1.067 605.0 4 6 8 8
] 2527 108 11240
9 26.079 11.145 629.0 J2 715 731 771 6423 266
10 43.943 18.779 1583.0
1 0147 0.063 558.0 6 6 7 6
| 12 0.307 0.131 1742.0
18 T 822 | 793 | 771 | 7171 | 311
Fig.6 User Deadline value as input 8 4 7 9
14 825 | 818 | 780 7181 370
Js 926 | 897 | 765 6312 | 297

88

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014

ISSN : 2348 - 6090
www.lJCAT.org

9.5 Time Graph

9,000 X

8,000 i -
— 7,000 e
m f S
E, 5,000 : /
9 5,000 = -
= 4,000 s
S 3,000 _=
= 2,000 /

1,000 =

0
0 10 20 30 40 S0 &0 70 80 an
Mo of Resource
[—Ga —Gasa —Pso HH —UDHH]

Fig.9Makespan comparison result

9.6 Cost
Table 3Cost Comparison Table
PARAMETER GA SA PSO BFOHH UDHH
AN 6585 203794 8928 5864 4080
J, 6585 150819 7815 3818 6511
J3 7123 181416 8155 5161 3429
Js 4792 181416 5762 4827 5391
Js 7895 169187 9282 6177 5427
9.7 Cost Graph
2|00
F00 :
G500 - e =
E oo D ==n
8 400 — //
300 /
200 e
100 /

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

No of Resource

[—Ga —casa — PO HH —UDHH]
Fig.10 Cost comparison result

Thus from the various results derived we can conclude that
hyper heuristic gives much better results than the other
algorithms since it uses multiple search strategies. Even
the cost is reduced drastically and the bandwidth occupied
is also very less. They transfer bits at a very high speed
when compared to the other algorithms. PSO ranks the
second position in terms of both cost and time. The rest of
the algorithms like the genetic algorithm (GA), suffrage
algorithm (SA) are far behind and there is no proper
resource allocation to the jobs.

10. Conclusion and Future Work

Grid resource scheduling rule outperforms the hybrid
heuristics in all the cases. The projected rule not solely
minimizes cost however it conjointly minimizes the
makespan. Thus from the results of various scheduling

89

algorithms are compared and Bacterial algorithm is found
to be the best one and this can be further enhanced by
using user deadline hyper heuristic where the user
specifies the time to complete the jobs. The algorithm for
User Deadline based Hyper Heuristic gives the best result
than the Bacterial Foraging Optimization where the users
request to complete the process within their specified time.
This can be verified from the table and graph
generated. The main disadvantage of USD is low reliability
where there is a chance of deadlock occurrence which will
be implemented in the future work.

References

[1] R.Buyya, M.Murshed,”Gridsim: a tool kit for the
modeling and simulation of distributed resource
management and scheduling for grid computing
concurrency and computation”, 2002.

[2] G.Jaspher W. Kathrine, Mansoorllaghi U, “job
scheduling algorithms in grid computing survey”,
International journal of engineering research and
technology (IJERT), ISSN: 2278-0181, vol. issue 7,
September 2012.

[3] Rakesh Sharma, VishnukantSoni, Manoj Kumar
Mishra, PrachetBhuyan, “A survey of job scheduling
and resource management in grid computing”, world
academy of science, engineering and technology 40
2010.

[4] T.R. Srinivasan, R. Shanmugalakshmi, ‘“Neural
approach for resource selection with PSO for grid
scheduling”, International Journal of computer
application volume no 11, September 2012.

[5] R. Kashyap, D.P. Vidyarthi, “Security driven
scheduling model for computational grid using Genetic
Algorithm”, WCECS 2011, October 19-21, 2011, San
Francisco, USA.

[6] Kamaligupta, manpreetsingh, ‘“Heuristic based task
scheduling in grid”, International journal of
engineering and technology (IJET), ISSN: 0975-4024,
vol. 4no 4 Aug-Sep 2012.

[7] Rajni, InderveerChana, “Bacterial foraging based
Hyper-heuristic for resource scheduling in grid
computing”, future generation computer systems,
Elsevier, 14 September 2012.

Author’s Profile

[| /‘

Prof. S. Gokuldev obtained his Bachelor’s
degree and Master’s degree in Computer
Science from Bharathiar University in the
year 1999 and 2003, He obtained his
Master of Philosophy in Computer Science
from Bharathidasan University in 2004,
Master of Engineering in Software
Engineering from Anna University,
Chennai in 2008 and currently pursuing
PhD in Anna University, Chennai. He has

around ten years of academic and teaching experience. Presently
working as an Associate Professor in Department of Computer Science &
Engineering, SNS College of Engineering, Coimbatore. His areas of
interest are Distributed and Grid Computing. He had published around 6

IJCAT International Journal of Computing and Technology, Volume 1, Issue 2, March 2014
ISSN : 2348 - 6090
www.lJCAT.org

papers in international journals and more than 15 papers in few reputed
International and National level conferences.

Lalith Kumar is an UG Scholar in Computer
Science and Engineering from SNS college of
Engineering, affiliated to Anna University, India.
His area of interest lies in grid and cloud computing
and scheduling in grid computing. His research
interest includes heuristic algorithms in grid
scheduling.

90

