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1. Introduction 
 

Communication (exchange of information) involves at 

least a sender to transmit the information and a receiver. 

Faithful communication occurs only when the receiver is 

able to reconstruct the exact information that the sender 

intended to transmit. All the existing practical 

communication systems, either secure (private) or insecure 

(public), are capable of transmitting the classical messages 

(encoded in a string of bits ‘0’ and ‘1’) over a classical 

channel and are governed by the laws of classical physics. 

 

Over the past decade, researchers have made appreciable 
progress in the field of quantum information theory and 

realized that the performance of communication can be 

enhanced by using transmission channels, which are 

governed by the laws of quantum mechanics. For example, 

quantum cryptography [1] allows to distribute a secret-key 

between two legitimate users say, Alice (sender) and Bob 

(receiver) with no assumptions of computational powers of 

eavesdropper, Eve. Another example is quantum 

superdense coding [2] that allows to send two-bit classical 

message by sending a single two-level particle and sharing 

an EPR pair, while classically it is required to send a four-
level particle. Thus, transmission capacity of classical 

information transfer is doubled by using EPR-correlation 

as quantum channel. The two examples given above are 
the steps towards the transmission of classical information 

over a quantum channel. 

 

Now let us consider transmission of qubits. Since no-

cloning theorem does not allow us to have many copies of 

an unknown qubit, which avoids us to extract complete 

information about the state of an unknown qubit and 

therefore it is not possible to transmit an unknown qubit in 

the form of classical information to the receiver through a 

classical channel. Also anyhow if state of qubit is known 

(i.e., θ  & φ  of qubit 1)2/sin(0)2/cos( θθ φi
e+  are 

known), then since θ  &  φ  can have infinite possible 

values that will require infinite number of bits sending to 

the receiver to construct the qubit. For these reasons, it is 

not possible to transfer quantum information encoded in a 

qubit through classical channel. 

 

To overcome such problem, Bennett et al [3] introduced 

the idea of quantum teleportation (QT) that involves 

complete transfer of quantum states of a qubit from sender 

(Alice) to receiver (Bob) using quantum entanglement and 

restricted amount of classical communication. The idea of 
QT has been extended from single qubit to multi qubits [4-

6] and several schemes have been proposed for 

experimental realization of QT for photonic states [7], 

photonic-polarized states [8], optical coherent states [9-10] 

and atomic states [11-12]. Also several experiments have 

demonstrated QT with photonic-polarized state [13], 

quantum state of nucleus [14] and atomic qubits [15-16]. 

 

M. Hillery [17] using GHZ state proposed quantum secret 

sharing in which quantum information splits into two 

receivers, while Karlsson and Bourennane [18] used GHZ 
state to teleport single qubit to one of the two receivers, 

such that only one of them (anyone) can completely 
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reconstruct the qubit depending upon the local 

measurement result of the other receiver. The use of more 

than two entangled qubits leads us to the concept of 

controlled QT in which quantum state can be reconstructed 

only by one receiver and the local measurement and 

classical communication by other receiver. Controlled QT 
is found to be useful in one-way secure quantum 

networking and in cryptographic conferencing [19-20]. 

Many authors presented the controlled QT scheme to 

teleport single qubit information state using GHZ like 

states [21] and W-state [22]. Further the idea of controlled 

QT was extended by many authors [23] for teleporting 

multi-qubit information states. 

 

Very recently, in reference [24], idea of secure quantum 

information exchange (SQIE) is proposed, which enables 

faithful exchange of two unknown single qubit states 

between two legitimate users, Alice and Bob, using a 
special kind of six-qubit entangled (SSE) state and a third 

party Charlie. This protocol is secure in the sense that 

either both, Alice and Bob, obtain their required 

information states or if this end result is not obtained due 

to any reason, nobody gets the correct information state. 

Also Alice and Bob cannot reconstruct the required 

information states by mutual communication about their 

measurement results without involving Charlie. 

 

Practically, not only exchange of single qubits but also the 

secure exchange of multi qubits will be required in the real 
world. For this reason, in the present paper, we extend the 

SQIE protocol from single qubit to multi qubits. Further, 

we also investigate the security of the original SQIE 

protocol and the generalized protocol when the number of 

qubits with the controller Charlie (the third party) is 

changed. 

2. Generalization of SQIE Protocol to the 

Information States of Arbitrary Number 

of Qubits  

In this section, we first present a brief review of the 

original SQIE protocol* [24] and then we will generalize 

this protocol to achieve secure exchange of information 

states involving an arbitrary number of qubits between 

Alice and Bob.  

 

                                                        
* The notations used here for original SQIE are not exactly 

the same as used earlier [24]. The change was required to 
make the generalization of these results, presented later in 

this section, more lucid and more presentable. 
 

Let it be required that Alice has to send arbitrary 

information state A

I

A
aa ]10[ 10 +=ξ  to Bob and at the 

same time, Bob has to send another information state 

B

I

B
+bbη ]10[ 10=  to Alice. This exchange process 

must be done in a way that both users get their required 

information states. However, if this is not obtained due to 

any reason, then nobody should get the correct information 

state.  

 

For this purpose, we use the SSE states [24],  
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where, ]1100[
2

1)1,0(
±=B , ]1001[

2

1)3(2,
±=B  

are the standard bi-partite Bell states and 
)3,2,1,0(

φ  are 

different elements of the set )11,10,01,00(  taken in 

any arbitrary order. Entangled modes A1 and A2 are with 

Alice, B1 and B2 are with Bob, while C1 and C2 are with 
the controller Charlie. The superscripts E and I are used 

for entangled state and information states respectively. 

 

We can write the initial state of composite system as, 
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From Appendix A, we see that,  
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where )(iσ ’s are real matrices, zxxzI σσσσ ,,,  for i=0, 

1, 2, 3 respectively. Using equations (3), we can write 
equation (2) as,  
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Alice and Bob perform Bell state measurement (BSM) on 

their qubits in modes A, A1 and B, B2 respectively and 

communicate their BSM results, say, r and s, in the forms 

of 2-cbits to Charlie through classical channels, while 

Charlie performs measurement in the computational basis 

{ 0 , 1 } on his qubits in modes C1 and C2. Based on the 

classical bits received and his own measurement results, 

Charlie decides the two 2-cbits information to be 

transmitted to each of Alice and Bob, which are necessary 

to make the correct unitary transformations on their 

particles A2 and B1 respectively for getting the replicas of 

required information states. From equation (4), it is clear 

that if result of Charlie’s measurement is i, then Alice 

performs unitary transformation †)()(
)(

22

s

A

i

A
σσ  and Bob 

performs unitary transformation †)()(
)(

11

r

B

i

B
σσ . 

 

We now generalize this SQIE protocol to secure exchange 

the information states of arbitrary number of qubits 

between Alice and Bob. For this, we consider that Alice 

wants to send to Bob arbitrary m-qubit information state, 

encoded in m-qubit modes ),....,,(}{ 21 mAAAA ≡ , 

expressed by 

}{10}{
][

~
.............1

~
0
~

AM

I

A
Maaa +++=ξ ,             (5) 

and Bob wants to send to Alice arbitrary n-qubit 

information state, encoded in n-qubit modes 

),....,,(}{ 21 nBBBB ≡ , expressed by 

}{10}{
][

~
.............1

~
0
~

BN

I

B
Nbbb +++=η ,               (6) 

with the same security that was there in the original SQIE 

protocol discussed above. Here, 12 −≡ m
M , 12 −≡ nN  

and for modes }{A , if Mj ≤≤0  and )....( 21 mjjjj =  in 

the binary representation, state 
}{21

}{
....

~
Am

A
jjjj = . 

2m-mutually orthogonal states 
}{

0
~

A
, 

}{
1
~

A
, …., 

}{

~

A
M  

form the computational basis for modes }{A . Similarly for 

modes }{B ,  if Nj ≤≤0  and )....( 21 njjjj =  in the 

binary representation, state 
}{21

}{
....

~
Bn

B
jjjj = . 

Superscripts I refer to information states. 

 

If },max{ nmp = , we give 2p-qubits to Charlie. The 

problem at this moment is to write the entangled state 

corresponding to the SSE state of the original SQIE 

protocol. In the original protocol, Charlie had 2 qubits and 

SSE state had 22=4 terms. 2p-qubits of Charlie thus 

requires 22p terms. If we consider generalized Bell states 

(GBS) [5] of modes ),....,,(}{ 21 mAAAA ′′′≡′  and 

),....,,(}{ 21 mBBBB ′′′≡′  and of ),....,,(}{ 21 nBBBB ′′′′′′≡′′  and 

),....,,(}{ 21 nAAAA ′′′′′′≡′′ , there are only 22m and 22n GBS 

respectively and only one of these gives a family of 22p 

states if nm ≠ . If nm > , 22m=22p but 22n falls shorter than 

22p and if mn > , 22n=22p but 22m falls shorter than 22p. This 

problem is circumvented by repeating the members of 

smaller family of states 
nm−2

2  times. 
 

Thus, if index i takes values 0, 1, ….., 22p-1, we can define 

indices )2(mod
2m

ii ≡′  and )2(mod
2n

ii ≡′′  and write 

GBS, 
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The entangled state corresponding to SSE state of the 

original SQIE protocol can be written as,   
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Here, modes ),....,,(}{ 221 pCCCC ≡  and states }{ )(

}{

i

C
φ  

are different orthogonal 22p-states belonging to the 

computational basis )12(
~

,......,1
~

,0
~ 2),( −≡ p

PP   in 

22p-dimensional Hilbert space, taken in any order. 

Superscript E refers to entangled state. 

 

We may now specify the GBS. Since 120 2 −≤′≤ mi , if 

we express i′  in quaternary basis as )....( 21 miiii ′′′=′  and 
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where 
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decimal conversion of the quaternary number )....( 21 niii ′′′′′′ . 

 
Using equations (5), (6) and (7), the initial state of 

composite system can be written as, 
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Qubits in modes }{},{},{ AAA ′′′  belong to Alice, qubits in 

modes }{},{},{ BBB ′′′  belong to Bob and qubits in modes 

}{C  belong to Charlie.  

 

From Appendix B, we see that the states, 
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where the GBS 
)(

}{},{

r

AA
E

′
 and 

)(

}{},{

s

BB
E

′′
 are given by 
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Using equations (13) and (14), equation (12) can be 

written as,  
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Alice may perform generalized 2m-qubit Bell state 

measurement (BSM) on her qubits in modes }{},{ AA ′  and 

Bob may perform generalized 2n-qubit BSM on his qubits 

in modes }{},{ BB ′′ , while Charlie measures his qubits in 

modes }{C , in the computational basis 

}{
~

,......,1
~

,0
~

P . Alice and Bob may send their BSM 

results, say, r and s, to Charlie through 2m-bit and 2n-bit 

classical channels respectively. Depending on these 

classical information conveyed by Alice and Bob and his 
own result, Charlie can send classical information to Alice 

and Bob telling them to perform the required unitary 

transformations on their qubits }{A′′  and }{B′  

respectively, which generate the exact replicas of the 

corresponding information states. From equation (15), it 

can be seen that if result of Charlie’s measurement is i, 

then Alice is required to perform unitary transformation 
†)(

}{
)(

}{ )(
s
A

i
A

UU ′′′′  and Bob unitary transformation 

†)(
}{

)(
}{ )(

r
B

i
B

UU ′′ .  

3. Security of SQIE Protocol with Respect to 

Change in the Number of Qubits Going to 

Charlie 

In this section, we discuss security of SQIE protocol 

against the number of qubits with the controller Charlie. 

Let us first consider that there is no qubit with Charlie and 

the entangled state shared between Alice and Bob is just a 

product of the two standard bi-partite Bell states, 
)(

,

)(

,,,, 22112211

j

BA

i

BA

E

BABA
BB ⊗=ψ , with )3,2,1,0(, ∈ji . 

Modes A1, A2 are with Alice and modes B1, B2 are with 

Bob. Such case is similar to two standard teleportation 
setups, one from Alice to Bob and other from Bob to 

Alice. There is no control of Charlie and this may lead to a 

situation when Alice sends her BSM result to Bob but Bob 

does not send his BSM result to Alice or vice versa, and 

thus makes the quantum information exchange insecure. In 

this case, there is unit probability for insecurity in the 

quantum information exchange, which is the upper bound 

of insecurity. 
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Let us next consider the second case when Charlie gets 

single qubit, i.e., the entangled state shared between Alice, 

Bob and Charlie can be of the form,       
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A2 are with Alice and modes B1, B2 are with Bob, while 

mode C is with Charlie. In this case, Alice and Bob cannot 

get the required information states without the assistance 

of Charlie by creating a direct classical channel between 

them. The reason is that they do not know which channel 
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However, if Alice and Bob want to ignore the role of 

Charlie by communicating classically directly to each 

other, the probability for getting the required information 

states successfully is half, i.e., probability for insecurity in 

the quantum information exchange is half. Thus, the 

second case is more secure than the first one discussed 

earlier. 
 

We can now consider the third case, when Charlie has two 

qubits, which is the original SQIE protocol, introduced by 

the authors [24].  In this case, if Alice and Bob want to 

ignore the role of Charlie by creating classical channel 

between them, there is only one-fourth probability that 

they are able to get the required information states 

successfully. The reason is that they do not know which 

channel (
)0(
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, 2211 BABA
BB ⊗ ) is setup 

between them, as it will be determined by Charlie’s 

measurement result ( 11or10or 01or00 ) 

respectively. Thus the third case is more secure than the 

two cases discussed earlier. 

 

If we now increase the number of qubits going to Charlie 

to three, the entangled state shared between the parties 

may be of the form, say, 
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We may involve any eight possible quantum channels 

between Alice and Bob out of the possible sixteen and 

Charlie’s measurement on his qubits decides the effective 

channel. Hence, the probability that Alice and Bob are 
successful in the information exchange without the 

assistance of Charlie is only one-eighth. 

 

If we increase further the number of qubits going towards 

Charlie to four, the entangled state shared between them 

will be of the form, say, 
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where 
)(i

φ and )( 11,10,01,00
)(
∈

j
φ . In this case, 

there are sixteen possible quantum channels between Alice 

and Bob and which one of these sixteen is effective, is 

decided by Charlie’s measurement on his qubits. Hence 

the probability that Alice and Bob are successful in the 

information exchange without the assistance of Charlie is 

only one-sixteenth, i.e., probability for insecurity in the 

quantum information exchange is only one-sixteenth. 

 

It is clear that the security of the SQIE protocol cannot be 

increased any further by increasing the number of qubits 

going towards Charlie beyond four because there are only 
sixteen possible combinations of product of two standard 

bi-partite Bell states (
)(

,

)(

, 2211

j

BA

i

BA
BB ⊗ ). Thus if five 

qubits go to Charlie, the entangled state involves 16 

quantum channels and 32 computational basis states of 

Charlie’s qubits. Hence entangled state will have 32 terms 

and each quantum channel will appear twice. The 

probability for occurrence of right channel, if Charlie has 

been sidetracked, is one-sixteenth. Thus one-sixteenth is a 

lower bound for insecurity for quantum information 

exchange when Charlie gets four or more qubits. 

 
This consideration can be generalized for exchange of 

multiple qubits. If Alice and Bob has to send m and n qubit 

states respectively, the number of possible quantum 
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channels between Alice and Bob is 22(m+n). Thus if Charlie 

gets l qubits, for l < 2(m+n), the probability for insecurity 

is 2-l and for l ≥ 2(m+n), it is 2-2(m+n). 

4. Conclusions 

We generalized the original SQIE protocol to exchange the 

information states of arbitrary number of qubits between 

two users. We also discussed the security of SQIE protocol 

and its generalization against the number of qubits with 

the controller Charlie. We calculate the probability for 

success of Alice and Bob in getting correct exchange of 

quantum information without the assistance of Charlie, 

i.e., by establishing direct classical channel between them. 

We conclude that upper bound probability of insecurity in 
SQIE protocol is unity and it occurs when the role of 

Charlie is cut in the SQIE protocol by not sending any 

qubit to him. Also, the security of the SQIE protocol 

cannot be increased indefinitely by increasing the number 

of qubits going to Charlie. For intended exchange of m 

qubits of Alice with n qubits of Bob, if l qubits are being 

sent to Charlie, the probability of insecurity is 
p−

2 , where 
p = min (2(m+n), l).   
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Appendix A 

We can write the state 
)(

, 11

i

BA

I

A
B⊗ξ  as,  

∑ =
⊗=⊗

3
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11111 r
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                                                                                      (A.1) 

Since we have  
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⊗==

1

0

)()0(

,
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, 11111111 2
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i
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i

B

i
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kkBB σσ , 

where )(

1

i

B
σ  is real matrix zxxzI σσσσ ,,,  for i =0, 1, 2, 3 

respectively. Then equation (A.1) can be written as, 
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,

)(

1111112
1
∑ ∑= =

⊗=
r kj BA

r
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r

AA

i
Bj kkjBa σσ    

                                                                                  (A.2) 

using ljAA
jl δ= . 

 

Since,   

111

111111111

)(

*)(†)(†)(

B

r
BB

B

r
BBB

r
BBA

r
AA

jk

jkkjkj

σ

σσσ

=

==
,  

equation (A.2) becomes, 
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r
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B ξσσ .                    (A.3) 

Similarly, for the state 
)(

, 22

i

AB

I

B
B⊗η , one can write 

directly using equation (A.3),  

][ 3

0

)()()(

,
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, 222222

)(
2
1
∑ =

⊗=⊗
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I
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                                                                                      (A.4)   

 

Appendix B 

We can write the state 
)(

}{},{}{

i
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Using equation (9) and (10), equation (B.1) can be written 

as, 
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Here,  
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and )......( 21 mrrr  is the quaternary representation of the 

decimal number r. Since 
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equation (B.2) becomes, 
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Similarly, for the state 
I

B

i
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, one can write 

directly using equation (B.4),  
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where  
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and )......( 21 nsss  is the quaternary representation of the 

decimal number s.  
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