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Abstract - The behaviour of empirical critical values in 

asymptotic tests for exponentiality with respect to their 
protection against errors of type – I and type – II when 
approximated by exact theoretical values is discussed. Three tests 
for exponentiality whose statistics are normally distributed are 
arbitrarily selected for the study. Each of the tests is described. 

The empirical critical values of the tests are obtained through 
Monte Carlo computations under different levels of significance 
and different sample sizes and these values are compared with 
their corresponding theoretical critical values. The results are 
discussed and interpreted. 
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1. Introduction 
 

It is a common practice among some users of statistics to 

assume that a set of data 1 2, ,..., ,
n

x x x   for a statistical 

inference comes from a certain distribution without a 

formal statistical test to ascertain the correctness or 

otherwise of the claim. This is very risky because the 

robustness of most techniques employed in statistical 

inference cannot be guaranteed and as a result such tests 

may be very sensitive to underlying distribution of the data 

set. In the event of this, the outcome of such a statistical 

inference is invalidated with wrong distributional 

assumption, the consequence of which varies with study. 
For instance, in disease control and reliability studies 

where investigations are carried out with utmost 

carefulness, a misleading result owing to wrong 

distributional assumption goes with a dare consequence. 

 

Suppose a sample of n  independent and identically 

distributed (i.i.d) observations, 
1 2, ,...,

n
x x x  are available 

from an unknown distribution function ( )F x , the 

goodness – of – fit test of the set of data to a certain 

distribution with distribution function 
0
( )F x  and density 

function 
0
( )f x  involves testing the hypothesis  

 

 
 

( ) ( )0 0:H F x F x=  against the alternative 

( ) ( )1 0:H F x F x≠  , see  [1]. Several procedures have 

been developed in the literature for this purpose according 

to certain characterizations of the suspect distribution, 

0
( )F x . A good number of these procedures for different 

distributions are exact, having test statistics with exact 

probabilities according to some well known probability 
distributions. Also, some of the procedures are asymptotic, 

having test statistics with approximate probabilities 

according to some well known probability distributions. 

Yet, other procedures exist with test statistics which 

cannot be approximated by any known probability 

distribution. While the applicability of the test procedures 

of this class of tests depends solely on empirical critical 

values and that of the exact  class of tests depends on exact 

critical values, the applicability of the class of asymptotic 

tests of goodness – of – fit depends on either of the two 

critical values which are expected to be approximately 

equal. 
 

One distribution that underlies a good number of statistical 

studies in health sciences, especially those that are related 

to renewal process, birth and death process, markov 

process, queuing theory and every other process 

characterized with appreciation and/or progressive decay 

(ageing) and reliability studies as well as survival analysis 

and generally in modeling is the exponential distribution. 

 

Goodness-of-fit test for exponentiality of a data set has 

been discussed extensively in the literature by a good 
number of authors including the Pearson’s chi-square test 

of goodness-of-fit, [2], [3], [4], [5], [6], [7], [8], [9], [10], 

[11], [12], [13], [14] and [15]. These tests are based on 

certain characterizations of the exponential distribution 

such as empirical distribution function ( )EDF , empirical 

characteristic function ( )ECF , empirical Laplace 

transform ( )ELT , normalized spacing, residual entropy 

and mean residual life functions. 
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Let 
1 2
, ,..., ,

n
x x x  be a set of observations from an unknown 

distribution ( )F x  with probability function ( )f x . The 

problem of testing for exponentiality involves testing the 

goodness-of-fit hypothesis, 
0

: ( )H F x  is an exponential 

distribution, against the alternative, 
1

: ( )H F x  is not an 

exponential distribution. 

 

The ability of the various tests for exponentiality to reject 
the null hypothesis when the true distribution of the data 

set is not exponential, known as the power of the test, 

varies from one test to another and depends on the nature 

of the true distribution of the data set, see [16]. Compared 

to the amount of efforts that have been put into 

development of several tests for exponentiality, much 

work has not been devoted to assessing the quality of these 

tests with respect to their power. [16] compares the powers 

of fifteen different tests for exponentiality against three 

classes of distributions, namely: alternative distributions 

with increasing hazard rate ( )IHR , alternative 

distributions with decreasing hazard rate ( )DHR  and 

alternative distributions with non-monotone hazard rate 

( )NMHR . Of all the tests considered, the statistics 

according to [5], [4], Kolmogorov-Smirnov, [17] among 

others were adjudged good against alternatives with 

monotone hazard rate (increasing or decreasing hazard 

rate). For the non-monotone hazard rate alternatives, the 

tests according to [5], [2] and [3] were found to be 

competitive. However, in most practical cases, the nature 

of the distribution is usually not known before the 

goodness – of – fit test and as a result, [16] generally 
recommends [5]. 

 

In a similar way, [18] in a partial review of tests for 

exponentiality compares the old and newer tests for 

exponential distribution, discarding less powerful ones 

according to [16]. Also, [19], in a broader work which 

includes over eighteen different procedures, agreed in part 

with [16] as well as with [18]. While [16] and [19] 

comparisons are based on the class of the alternative 

distributions in terms of the monotonicity of hazard rate, 

[18] tends to be compared along classes of competing tests 

based on the characterizations of the exponential 
distribution. 

 

Some of the statistics developed in the various tests for 

exponentiality have either exact or asymptotic distribution; 

see for instance [16]. They are employed in the tests by 

using the theoretical critical values of their exact or 

approximate distributions. Also, a good number the 

statistics developed for a similar purpose are applied via 

empirical critical values owing to the fact that their exact 

or asymptotic distributions cannot be determined, at least 

in an applicable form, see for instance [18]. In this class of 

statistics for exponentiality test, the empirical critical value 

for each sample size is determined, at a given level of 

significance, through Monte Carlo simulation. This is done 

by obtaining a very large number of equal – sized samples 

from the null distribution and computing from each of the 
samples the realization of the statistic in question so as to 

obtain the appropriate fractile that agrees with the stated 

level of significance as the empirical critical value. 

 

Obviously, the volume of computation involved in the 

determination of empirical critical values is enormous. 

However, it is possible to get them obtained for each test 

at different sample sizes and levels of significance so that 

they can be made available for easy applicability of the 

tests. The problem of standard error of estimates in the 

computation of the empirical critical values expectedly 

decreases with increase in the number of repetitions in 
simulation.  

 

In other words, for a sufficiently large number of 

simulations, it would ordinarily be expected that the 

observed difference in the power of the test attributed to 

the use of empirical critical value instead of the theoretical 

one would be insignificant. This observed difference 

between the empirical and corresponding theoretical 

critical values is exactly the problem which the paper 

seeks to address. 

 
This study is considered very imperative especially now 

that the literature in goodness – of – fit tests is generally 

experiencing remarkable growth in this direction of test 

statistics with empirical critical values. Some well 

regarded tests for exponentiality whose statistics are 

known to have asymptotic distributions are arbitrarily 

selected for the study. Section 2 gives a description of the 

statistics to be used as well as their asymptotic 

distributions. In section 3, the simulation study will be 

carried out while discussion of results and conclusion are 

given in section 4. 

 

2. Description of Tests 
 

In this section, three tests shall be used for the above 

problem. They are the tests developed in [5]; [20], and [6], 

which shall be denoted by 
n

CO , 
n

G  and 
n

EP  respectively. 

They are all asymptotic and are selected arbitrarily for the 
study among all the asymptotic tests for exponentiality. In 

what follows therefore, their descriptions shall be given. 

 

2.1 The 
n

CO  Test 

 

The test in [5] is a two-sided test of exponentiality whose 

statistic is given as: 
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( )
1

1 ; 1, 2, ..., ; / ,
n

n j j j j n

j

CO n Y InY j n Y X X
=

= + − = =∑  and 

1

1 n

n j

j

X X
n =

= ∑ .           (2.1) 

The statistic rejects the null hypothesis of exponentiality 

for both small and large values of .
n

CO It is also obtained 

that the asymptotic null distribution of the statistic is such 

that 

( ) ( ) ( )
1/ 2* 6 / 0,1

n n
CO n CO Nπ= �                     (2.2)                                                                                                                                                         

As a result of the asymptotic null distribution, it is possible 

to use standard normal critical values when conducting a 

test of exponentiality via this statistic. 

 

2.2 The 
n

G  Test 

 

In [20], a scale – free goodness – of – fit test for 

exponentiality is studied which is based on the normalized 

spacing and a rejection of the null hypothesis is proposed 

by the test for large values of the statistic: 

, 1

, ,

1
;

2 ( 1)

, 1, 2, ..., ; /

n

n j k

j k

j k j k n

G Y Y
n n

j k n Y X X

=

= −
−

= =

∑
                          (2.3)          (2.3) 

It also obtained that the asymptotic null distribution of the 

statistic:  

{ } ( )
1/ 2* 12( 1) 1/ 2

n n
G n G= − −                             (2.4)                                                                                         

is standard normal even for samples as small as 10n =  

and claimed that the statistic has very high power against 

Weibull, Uniform and Gamma alternatives. 

 

2.3 The 
n

EP  Test 

 

An exponential random variable with parameter θ  has a 

characteristic function ( ) 1/(1 )t i tϕ θ= −  with a parametric 

estimator ˆ( ) 1/(1 ),
n

t iX tϕ = −  where 

1

(1 )
n

n j

j

X n X
=

= ∑  is 

the sample mean. Comparing this with the empirical 

characteristic function, ,ECF  of an exponential random 

sample, [6] proposed a statistic: 

( )
1/ 2 1

48 ( )
(1 ) 2 (1 )

n

n

n

n n

EP

X
n t dt

iX t iX t
ϕ

π

∞

−∞

=

 
− 

− + 
∫    (2.5)  

Straight forward integration and simplification of eq. (2.5) 

gives it in a more computational form as: 

( ) ( )
1/ 2

1

1 1
48 exp ;

2

1, 2, ...,

n

n j

j

EP n Y
n

j n

=

 
= − − 

 

=

∑
                (2.6) 

and /j j nY X X=  as usual. The asymptotic distribution of 

n
EP  statistic is standard normal and the null hypothesis of 

exponentiality is rejected for large values of 
n

EP . The test 

is consistent against any fixed alternative distribution with 

monotone hazard rate, provided the distribution is 

absolutely continuous. 
 

3. Simulation Study 
 

In this section, comparisons of the empirical and 

theoretical critical values in asymptotic tests for 

exponentiality with respect to their type one and type two 

error rates shall be made by using Monte Carlo 
computations. The theoretical critical values, adapted from 

[21], for 0.005, 0.01, 0.025 and 0.05 levels of significance 

are presented in table 1.The empirical critical values of the 

three tests for 20, 30, 50 and 100 sample sizes are 

obtained, each at 0.005, 0.01, 0.025 and 0.05 levels of 

significance by 5,000 simulations. These values are 

presented in Table 2. Under each test for exponentiality 

considered here, 5,000 samples of sizes n = 20, 30, 50, and 

n = 100 are generated and for each sample, the statistics 

are evaluated. The empirical critical value is obtained from 

each statistic at a given level of significance, α  and 

sample size, n as the 100(1 - α )th percentile of the 5,000 

Monte Carlo computations. Each average value in table 2 

is obtained as the average empirical critical value of all the 

4 sample sizes (n = 20, 30, 50, and n = 100) considered for 

a level of significance. 

 

4. Discussion of Results and Conclusion 
 

The exact critical values for a standard normal 

distribution, which the tests, *

n
CO , *

n
G , and 

n
EP , set to 

approximate are presented in table 1 for different levels of 

significance while the corresponding empirical critical 

values for sample sizes n =20, 30, 50 and n = 100 are 

presented in table 2. It is well known that an appreciation 
of the critical value of a test beyond the expected (exact 

critical value) gives room for a wrong null hypothesis to 

be accepted, (type – II – error) while a depreciation of the 

critical value beyond the expected tends to allow rejection 

of a null hypothesis which is right, (type – I – error). 

 
Table 1. The theoretical (exact) critical values of the standard normal distribution at different levels of significance

. 
α  0.050 0.025 0.010 0.005 

Exact critical values 1.645 1.960 2.325 2.578 
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Based on these, the empirical critical values of the tests for 

exponentiality considered here ( *

n
CO , *

n
G , and 

n
EP ) are 

expected to be very close to the corresponding exact 
critical values of the standard normal distribution to give 

the needed protection to the tests against the errors of type 

– I and type – II. 

 

From table 2, we can see that the tests vary in their 

approximations to the standard normal distribution. The 
*

n
CO  test maintains a fair decrease of the type – II – error 

from sample size n = 20 to the one of n = 100 in almost all 

the levels of significance without a check on the increase 

of type – I – error. The tests *

n
G  and 

n
EP , on the other 

hand, maintain a fair reduction of type – I – error with an 

appreciable check on the type – II – error. The average 

critical values in all the three tests show more protection 

against the two errors for all the levels of significance 

considered. It can be seen that the deviations of the 

empirical critical values from the theoretical ones are 

minimum with the average values. 

 
Table 2. The empirical critical values of tests for exponentiality ( α = 0.005, 0.01, 0.025 and 0.05; n = 20, 30, 50 and 100) 

 

   n α  
n

CO  
*

n
CO  n

G  
*

n
G  n

EP  

20 

 

0.050 

0.025 

0.010 

0.005 

10.0512 

10.6972 

11.8277 

12.1127 

1.7495 

1.8940 

2.1606 

2.1610 

0.6047 

0.6254 

0.6283 

0.6352 

1.6202 

  1.9339 

2.1469 

2.1470 

1.3842 

1.7831 

2.1218 

2.1220 

  30 0.050 
0.025 

0.010 

0.005 

12.2572 
12.7176 

14.8897 

14.8900 

1.5672 
1.8349 

2.2983 

2.2990 

0.5638 
0.5690 

0.6149 

0.6150 

1.4432 
1.9020 

2.2863 

2.3000 

1.4044 
1.7116 

2.3668 

2.5670 

50 0.050 

0.025 

0.010 

0.005 

13.2332 

15.9652 

21.9220 

21.9230 

1.4586 

1.7597 

2.4163 

2.8269 

0.5759 

0.5873 

0.5978 

0.6052 

1.8410 

2.0291 

2.3731 

2.5519 

1.4343 

2.0036 

2.3840 

2.5700 

100 0.050 

0.025 

0.010 

0.005 

17.3053 

20.0142 

22.0604 

29.1656 

1.3487 

1.6154 

1.7082 

2.8269 

0.5403 

0.5460 

0.5519 

0.5553 

1.4283 

1.7142 

2.0270 

2.0280 

1.2945 

1.6286 

1.7928 

1.9781 

Average 0.050 

0.025 

0.010 
0.005 

13.2117 

14.8486 

17.6750 
19.5228 

1.5310 

1.7760 

2.1459 
2.4260 

0.5712 

0.5819 

0.5982 
0.6027 

1.5782 

1.8948 

2.2083 
2.2565 

1.3794 

1.7817 

2.1664 
2.3093 

 
Based on the observations made so far, it is very likely that 

tests for exponentiality, with asymptotic test statistics, 

based on exact critical values are vulnerable to errors of 

type – I and type – II. It is therefore important to 

recommend here that such test statistics should be applied 

in this respect with a caution. In a situation where the 
empirical critical value of such a test statistic is known, it 

is safer to use it instead of the theoretical (exact) critical 

values of the distribution. 
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